1 |
WANG Xiyong, LIU Xuefeng, SHI Laixin, et al. Characteristic and formation mechanism of Matt surface of double-rolled copper foil[J]. Journal of Materials Processing Technology, 2015, 216: 463-471.
|
2 |
WOO T G, PARK I S, SEOL K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345.
|
3 |
周文木, 胡智宏. 电解铜箔在印制电路板端的评估方法研究[J]. 印制电路信息, 2021, 29(12): 6-12.
|
|
ZHOU Wenmu, HU Zhihong. Research on measuring methods for ED copper foil by the PCB enterprises[J]. Printed Circuit Information, 2021, 29(12): 6-12.
|
4 |
文雯. 高频超薄载体铜箔制作及应用研究[D]. 成都: 电子科技大学, 2022.
|
|
WEN Wen. Study on fabrication and application of high frequency ultra-thin carrier copper foil[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
5 |
YIN Xiangqian, PENG Lijun, SAIF Kayani, et al. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Metals, 2016, 35(12): 909-914.
|
6 |
DONG Zhichao, FEI Xiangyu, GONG Benkui, et al. Effects of deep cryogenic treatment on the microstructure and properties of rolled Cu foil[J]. Materials, 2021, 14(19): 5498.
|
7 |
ZHAO Weichao, FENG Rui, WANG Xiaowen, et al. Relationship between microstructure and etching performance of 12 μm thick rolled copper foil[J]. Journal of Materials Research and Technology, 2022, 21: 1666-1681.
|
8 |
COONROD John. The impact of electrical and thermal interactions on microwave PCB performance[J]. Microwave Journal, 2014, 57(2): 68-78.
|
9 |
YU Weiyi, LIN Chaoyu, LI Qingyang, et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current[J]. Journal of Applied Electrochemistry, 2021, 51(3): 489-501.
|
10 |
XUE Shaoxi, WANG Chunju, CHEN Pengyu, et al. Investigation of electrically-assisted rolling process of corrugated surface microstructure with T2 copper foil[J]. Materials, 2019, 12(24): 4144.
|
11 |
FANG C, TRAN D P, LIU H C, et al. Effect of electroplating current density on tensile properties of nanotwinned copper foils[J]. Journal of the Electrochemical Society, 2022, 169(4): 042503.
|
12 |
CHANG H K, CHOE B H, LEE J K. Influence of titanium oxide films on copper nucleation during electrodeposition[J]. Materials Science and Engineering: A, 2005, 409(1/2): 317-328.
|
13 |
KURIHARA Hiroaki, KONDO Kazuo, OKAMOTO Yasuyuki. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. Journal of Chemical Engineering of Japan, 2010, 43(7): 612-617.
|
14 |
CHENG H Y, TRAN D P, TU K N, et al. Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating[J]. Materials Science and Engineering: A, 2021, 811: 141065.
|
15 |
APAKASHEV R A, KHAZIN M L, VALIEV N G. Effect of temperature on the structure and properties of fine-grain copper foil[J]. Metal Science and Heat Treatment, 2020, 61(11/12): 787-791.
|
16 |
GETROUW M A, DUTRA A J. The influence of some parameters on the surface roughness of thin copper foils using statistical analysis[J]. Journal of Applied Electrochemistry, 2001, 31(12): 1359-1366.
|
17 |
DE LA R F, RAMOS A. Study of the copper electrodeposition on titanium electrodes[J]. ECS Transactions, 2010, 29(1): 155-161.
|
18 |
HAN Haneul, LEE Chaerin, KIM Youjung, et al. Cu to Cu direct bonding at low temperature with high density defect in electrodeposited Cu[J]. Applied Surface Science, 2021, 550: 149337.
|
19 |
马秀玲, 李永贞, 姚恩东, 等. 不同厚度电解铜箔的组织与性能研究[J]. 稀有金属材料与工程, 2019, 48(9): 2905-2909.
|
|
MA Xiuling, LI Yongzhen, YAO Endong, et al. Microstructure and properties of electrolytic copper foil with different thicknesses[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2905-2909.
|
20 |
XU Xiaofei, ZHU Zengwei, XUE Ziming, et al. Friction-assisted pulse electrodeposition of high-performance ultrafine-grained Cu deposits[J]. Surface Engineering, 2021, 37(11): 1414-1421.
|
21 |
TAO J M, CHEN X F, HONG P, et al. Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition[J]. Journal of Alloys and Compounds, 2017, 717: 232-239.
|
22 |
左慧, 张凯, 曹旭, 等. 铜箔激光冲击微成形微观组织与残余应力研究[J]. 激光技术, 2018, 42(1): 94-99.
|
|
ZUO Hui, ZHANG Kai, CAO Xu, et al. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. Laser Technology, 2018, 42(1): 94-99.
|
23 |
HONG Bo, JIANG Chuanhai, WANG Xinjian. XRD characterization of texture and internal stress in electrodeposited copper films on Al substrates[J]. Powder Diffraction, 2007, 22(4): 324-327.
|
24 |
洪波. 电沉积铜薄膜中织构与内应力的研究[D]. 上海: 上海交通大学, 2008.
|
|
HONG Bo. Study on texture and internal stress in electrodeposited copper films[D].Shanghai: Shanghai Jiao Tong University, 2008.
|
25 |
LIU Lingling, BU Yeqiang, SUN Yue, et al. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. Journal of Materials Science & Technology, 2021, 74: 237-245.
|
26 |
WANG Wei, LI Yabing. Effect of Cl– on the adsorption-desorption behavior of PEG[J]. Journal of the Electrochemical Society, 2008, 155(4): D263.
|
27 |
TANG J, ZHU Q S, ZHANG Y, et al. Copper bottom-up filling for through silicon via (TSV) using single JGB additive[J]. ECS Electrochemistry Letters, 2015, 4(9): D28-D30.
|
28 |
ZENG T W, YEN S C. Effects of additives in an electrodeposition bath on the surface morphologic evolution of electrodeposited copper[J]. International Journal of Electrochemical Science, 2021, 16(2): 210245.
|
29 |
ZHANG Pengyuan, XU Zhengyi, ZHANG Bo, et al. Enhanced inhibition on hydrogen permeation during electrodeposition process by rare earth (RE = Ce) salt additive[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13803-13814.
|
30 |
程庆, 李宁, 潘钦敏, 等. 电解铜箔添加剂的研究进展及应用现状[J]. 电镀与精饰, 2022, 44(12): 69-79.
|
|
CHENG Qing, LI Ning, PAN Qinmin, et al. Research progress and application status of electrolytic copper foil additives[J]. Plating and Finishing, 2022, 44(12): 69-79.
|