Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5213-5222.DOI: 10.16085/j.issn.1000-6613.2022-2139
• Industrial catalysis • Previous Articles Next Articles
YIN Keke(), WANG Yugao(), GU Bao, SHEN Jun
Received:
2022-11-18
Revised:
2023-03-24
Online:
2023-11-11
Published:
2023-10-15
Contact:
WANG Yugao
通讯作者:
王玉高
作者简介:
尹科科(1997—),男,硕士研究生,研究方向为羧酸盐直接酯化。E-mail:1229801267@qq.com。
基金资助:
CLC Number:
YIN Keke, WANG Yugao, GU Bao, SHEN Jun. Direction esterification of bio-based succinate catalyzed by solid super acid SO42-/ZrO2[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5213-5222.
尹科科, 王玉高, 谷豹, 申峻. 固体超强酸SO42-/ZrO2催化生物基丁二酸盐直接酯化[J]. 化工进展, 2023, 42(10): 5213-5222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2139
类型 | Si/Al | 比表面积/m2∙g-1 | 孔径/nm |
---|---|---|---|
MCM-41 | 全硅 | ≥1000 | 4 |
USY | 5 | ≥805 | 3.8 |
SAPO-34 | 0.25 | ≥550 | 0.4 |
HY | ≥2.7 | ≥650 | 0.74 |
类型 | Si/Al | 比表面积/m2∙g-1 | 孔径/nm |
---|---|---|---|
MCM-41 | 全硅 | ≥1000 | 4 |
USY | 5 | ≥805 | 3.8 |
SAPO-34 | 0.25 | ≥550 | 0.4 |
HY | ≥2.7 | ≥650 | 0.74 |
浸渍浓度/mol·L-1 | C | O | S | Zr |
---|---|---|---|---|
0.5 | 15.92 | 56.63 | 5.83 | 21.62 |
1 | 16.73 | 56.53 | 6.12 | 20.61 |
2 | 26.33 | 49.93 | 6.47 | 17.27 |
3 | 18.58 | 56.08 | 8.86 | 16.48 |
浸渍浓度/mol·L-1 | C | O | S | Zr |
---|---|---|---|---|
0.5 | 15.92 | 56.63 | 5.83 | 21.62 |
1 | 16.73 | 56.53 | 6.12 | 20.61 |
2 | 26.33 | 49.93 | 6.47 | 17.27 |
3 | 18.58 | 56.08 | 8.86 | 16.48 |
浸渍浓度/mol·L-1 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
2 | 86.83 | 7.93 | 0.17 |
3 | 60.43 | 7.08 | 0.11 |
浸渍浓度/mol·L-1 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
2 | 86.83 | 7.93 | 0.17 |
3 | 60.43 | 7.08 | 0.11 |
样品 | C | O | S | Zr |
---|---|---|---|---|
SZ-未使用 | 26.33 | 49.93 | 6.47 | 17.27 |
SZ-使用后 | 27.73 | 50.08 | 2.69 | 19.5 |
样品 | C | O | S | Zr |
---|---|---|---|---|
SZ-未使用 | 26.33 | 49.93 | 6.47 | 17.27 |
SZ-使用后 | 27.73 | 50.08 | 2.69 | 19.5 |
1 | 张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展[J]. 化工学报, 2020, 71(5): 1964-1975. |
ZHANG Yao, QIU Xiaoman, CHEN Chengpeng, et al. Recent progress in microbial production of succinic acid[J]. CIESC Journal, 2020, 71(5): 1964-1975. | |
2 | HE Liangtu, LIU Lei, HUANG Yuzhang, et al. One-pot synthesis of dimethyl succinate from d-fructose using Amberlyst-70 catalyst[J]. Molecular Catalysis, 2021, 508: 111584. |
3 | 夏榆, 姚勇波, 姚菊明, 等. PBS/天然高分子复合材料的现状及进展[J]. 塑料, 2022, 51(2): 85-88, 100. |
XIA Yu, YAO Yongbo, YAO Juming, et al. Current status and development of PBS/natural polymer composite[J]. Plastics, 2022, 51(2): 85-88, 100. | |
4 | 李求进, 梁伯润. 聚乙二醇丁二酸酯/酚醛树脂共混物的结晶行为[J]. 合成技术及应用, 2006, 21(1): 1-3. |
LI Qiujin, LIANG Borun. Study on crystallization behavior of PESu/phenolic blends[J]. Synthetic Technology and Application, 2006, 21(1): 1-3. | |
5 | WAN Xinyan, REN Dezhang, LIU Yunjie, et al. Facile synthesis of dimethyl succinate via esterification of succinic anhydride over ZnO in methanol[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(3): 2969-2975. |
6 | 姚伶俐, 潘海峰, 田文娟, 等. 代谢工程改造大肠杆菌合成丁二酸及发酵罐放大工艺[J]. 微生物学通报, 2018, 45(12): 2541-2551. |
YAO Lingli, PAN Haifeng, TIAN Wenjuan, et al. Production of succinate by a metabolic engineered Escherichia coli and its scale-up process in fermentor[J]. Microbiology China, 2018, 45(12): 2541-2551. | |
7 | OKINO Shohei, NOBURYU Ryoji, SUDA Masako, et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain[J]. Applied Microbiology and Biotechnology, 2008, 81(3): 459-464. |
8 | SONG Hyohak, LEE Sang Yup. Production of succinic acid by bacterial fermentation[J]. Enzyme and Microbial Technology, 2006, 39(3): 352-361. |
9 | ORJUELA Alvaro, YANEZ Abraham J, PEEREBOOM Lars, et al. A novel process for recovery of fermentation-derived succinic acid[J]. Separation and Purification Technology, 2011, 83: 31-37. |
10 | ORJUELA Alvaro, KOLAH Aspi, HONG Xi, et al. Diethyl succinate synthesis by reactive distillation[J]. Separation and Purification Technology, 2012, 88: 151-162. |
11 | CABRERA-RODRÍGUEZ Carlos I, VAN DER WIELEN Luuk A M, STRAATHOF Adrie J J. Separation and catalysis of carboxylates: Byproduct reduction during the alkylation with dimethyl carbonate[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10964-10973. |
12 | LÓPEZ-GARZÓN Camilo S, OTTENS Marcel, VAN DER WIELEN Luuk A M, et al. Direct downstream catalysis: From succinate to its diethyl ester without intermediate acidification[J]. Chemical Engineering Journal, 2012, 200/201/202: 637-644. |
13 | LÓPEZ-GARZÓN Camilo S, VAN DER WIELEN Luuk A M, STRAATHOF Adrie J J. Green upgrading of succinate using dimethyl carbonate for a better integration with fermentative production[J]. Chemical Engineering Journal, 2014, 235: 52-60. |
14 | LóPEZ-GARZóN Camilo S, VAN DER WIELEN Luuk A M, STRAATHOF Adrie J J. Ester production from bio-based dicarboxylates via direct downstream catalysis: Succinate and 2, 5-furandicarboxylate dimethyl esters[J]. RSC Advances, 2016, 6(5): 3823-3829. |
15 | CABRERA-RODRÃGUEZ Carlos I, PALTRINIERI Laura, DE SMET Louis C P M, et al. Recovery and esterification of aqueous carboxylates by using CO2-expanded alcohols with anion exchange[J]. Green Chemistry, 2017, 19(3): 729-738. |
16 | BARVE Prashant P, KAMBLE Sanjay P, JOSHI Jyeshtharaj B, et al. Preparation of pure methyl esters from corresponding alkali metal salts of carboxylic acids using carbon dioxide and methanol[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1498-1505. |
17 | 谷豹. 丁二酸钠直接酯化及固体酸催化酯化制备丁二酸二甲酯[D]. 太原: 太原理工大学, 2022. |
GU Bao. Preparation of dimethyl succinate by direct esterification of sodium succinate and esterification catalyzed by solid acid[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
18 | 薛淼, 朱美华, 钟彩君, 等. ZSM-5分子筛膜在乙酸异戊酯酯化反应中的应用[J]. 膜科学与技术, 2018, 38(4): 107-112. |
XUE Miao, ZHU Meihua, ZHONG Caijun, et al. Application of ZSM-5 zeolite membrane for esterification of isoamyl acetate[J]. Membrane Science and Technology, 2018, 38(4): 107-112. | |
19 | 李三喜, 徐妍如, 王松. SO4 2-/TiO2-HZSM-5固体超强酸催化剂的制备及酯化性能[J]. 化工进展, 2015, 34(3): 745-750. |
LI Sanxi, XU Yanru, WANG Song. Preparation of solid superacid SO4 2-/TiO2-HZSM-5 catalyst and its catalytic performance in esterification[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 745-750. | |
20 | WANG Shan, PU Jianglong, WU Jiaqin, et al. SO4 2-/ZrO2 as a solid acid for the esterification of palmitic acid with methanol: Effects of the calcination time and recycle method[J]. ACS Omega, 2020, 5(46): 30139-30147. |
21 | WANG Anqi, WANG Junxia, WANG Hui, et al. Synthesis of SO4 2-/TiO2-ZnAl2O4 composite solid acids as the esterification catalysts[J]. RSC Advances, 2017, 7(23): 14224-14232. |
22 | WANG Pengzhao, YUE Yuanyuan, WANG Tinghai, et al. Alkane isomerization over sulfated zirconia solid acid system[J]. International Journal of Energy Research, 2020, 44(5): 3270-3294. |
23 | IGLESIAS Jose, MELERO Juan A, MORALES Gabriel, et al. Dehydration of xylose to furfural in alcohol media in the presence of solid acid catalysts[J]. ChemCatChem, 2016, 8(12): 2089-2099. |
24 | THIMMARAJU N, MOHAMED SHAMSHUDDIN S Z, PRATAP S R, et al. Effective synthesis of novel O-acetylated compounds over ZrO2-Al2O3 solid acid[J]. Arabian Journal of Chemistry, 2019, 12(8): 1860-1869. |
25 | 胡亚飞, 蔡晶, 李小森. 环戊烷-甲烷水合物生成过程的温度特性[J]. 化工进展, 2016, 35(5): 1418-1427. |
HU Yafei, CAI Jing, LI Xiaosen. System temperature properties in the process of the cyclopentane-methane binary hydrates formation[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1418-1427. | |
26 | 赵培瑞, 李娜, 陈茜文, 等. 改性固体酸SO4 2-/ZrO2催化合成没食子酸甲酯的研究[J]. 中南林业科技大学学报, 2017, 37(6): 114-118. |
ZHAO Peirui, LI Na, CHEN Qianwen, et al. Study on synthesis of methyl gallate catalyzed by modified solid superacid SO4 2-/ZrO2 [J]. Journal of Central South University of Forestry & Technology, 2017, 37(6): 114-118. | |
27 | 张萍, 李露, 于凤丽, 等. SO4 2-/ZrO2的制备工艺对催化橡胶籽油裂解油酯化的影响[J]. 燃料化学学报, 2013, 41(11): 1322-1327. |
ZHANG Ping, LI Lu, YU Fengli, et al. Preparation of SO4 2-/ZrO2 catalyst and its performance in the esterification of pyrolytic rubber seed oil[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1322-1327. | |
28 | ZHANG Hongwei, YANG Weijia, ROSLAN Irwan Iskandar, et al. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone[J]. Journal of Catalysis, 2019, 375: 56-67. |
29 | SONG Hua, CUI Xuehan, JIANG Bolong, et al. Preparation of SO4 2-/ZrO2 solid superacid and oxidative desulfurization using K2FeO4 [J].Research on Chemical Intermediates, 2015, 41(1): 365-382. |
30 | WARD D A, KO E I. One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids[J]. Journal of Catalysis, 1994, 150(1): 18-33. |
31 | 张亚平, 黎汉生, 甄彬, 等. SO4 2-/TiO2-SiO2固体超强酸的制备、表征及其性能[J]. 化工进展, 2011, 30(S1): 155-158. |
ZHANG Yaping, LI Hansheng, ZHEN Bin, et al. Preparation, characterization and catalytic properties of SO4 2-/TiO2-SiO2 solid superacid[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 155-158. | |
32 | ARDIZZONE S, BIANCHI C L, GRASSI E. The role of the oxide precursor on the features of sulphated zirconia[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 135(1/2/3): 41-51. |
33 | KUMARI Latha, LI W Z, XU J M, et al. Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties[J]. Crystal Growth & Design, 2009, 9(9): 3874-3880. |
34 | BEDILO Alexander F, KIM Vladimir I, VOLODIN Alexander M. Effect of light on reactions over sulfated zirconia[J]. Journal of Catalysis, 1998, 176(2): 294-304. |
35 | WANG Anqi, WANG Junxia, LU Can, et al. Esterification for biofuel synthesis over an eco-friendly and efficient kaolinite-supported SO4 2-/ZnAl2O4 macroporous solid acid catalyst[J]. Fuel, 2018, 234: 430-440. |
36 | 马惠琴, 王卫, 马媛媛. La改性固体超强酸S2O8 2-/ZrO2-Al2O3的制备及催化性能研究[J]. 材料导报, 2014, 28(6): 48-52, 64. |
MA Huiqin, WANG Wei, MA Yuanyuan. Preparation and catalytic properties study of solid superacid catalyst S2O8 2-/ZrO2-Al2O3 modified by lanthanum[J]. Materials Review, 2014, 28(6): 48-52, 64. | |
37 | 金顶峰, 王新庆, 金红晓, 等. 硫酸化介孔氧化锆固体超强酸的制备和应用研究[J]. 材料工程, 2008, 36(10): 223-227. |
JIN Dingfeng, WANG Xinqing, JIN Hongxiao, et al. Synthesis and performance of sulfated mesoporous zorcina solid superacid[J]. Journal of Materials Engineering, 2008, 36(10): 223-227. | |
38 | 赵燕, 郑琦宏, 于洁. SO4 2-/TiO2型光催化材料的制备与表征[J]. 材料导报, 2015, 29(S1): 313-315, 322. |
ZHAO Yan, ZHENG Qihong, YU Jie. Preparation and characterization of SO4 2-/TiO2 photocatalyst[J]. Materials Review, 2015, 29(S1): 313-315, 322. | |
39 | 戎梅竹, 申延明, 刘宏伟, 等. SO4 2-/ZrO2固体超强酸的制备及表征[J]. 化工科技, 2006, 14(4): 34-37. |
RONG Meizhu, SHEN Yanming, LIU Hongwei, et al. Preparation and characterization of superacid SO4 2-/ZrO2 [J]. Science & Technology in Chemical Industry, 2006, 14(4): 34-37. | |
40 | 郑云天, 位艳宾, 徐庆茹, 等. SO4 2-/ZrO2固体超强酸的制备及催化性能[J]. 化工技术与开发, 2016, 45(7): 7-10. |
ZHENG Yuntian, WEI Yanbin, XU Qingru, et al. Preparation and catalytic properties of SO4 2-/ZrO2 solid superacid[J]. Technology & Development of Chemical Industry, 2016, 45(7): 7-10. | |
41 | 王晋东, 李文志, 杜志杰, 等. Ni-S2O8 2-/TiO2固体超强酸催化解聚木质素的研究[J]. 太阳能学报, 2017, 38(4): 867-873. |
WANG Jindong, LI Wenzhi, DU Zhi jie, et al. Study of lignin catalytic depolymerization by solid superacid Ni-S2O8 2-/TiO2 [J]. Acta Energiae Solaris Sinica, 2017, 38(4): 867-873. | |
42 | SHI Xuejun, WU Yulong, LI Panpan, et al. Catalytic conversion of xylose to furfural over the solid acid SO4 2-/ZrO2-Al2O3/SBA-15 catalysts[J]. Carbohydrate Research, 2011, 346(4): 480-487. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[9] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |