Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4538-4549.DOI: 10.16085/j.issn.1000-6613.2022-1872
• Chemical processes and equipment • Previous Articles Next Articles
LUO Cheng1(), FAN Xiaoyong2, ZHU Yonghong1, TIAN Feng1, CUI Louwei3, DU Chongpeng1, WANG Feili1, LI Dong1(), ZHENG Hua’an1()
Received:
2022-10-09
Revised:
2022-11-23
Online:
2023-09-28
Published:
2023-09-15
Contact:
LI Dong, ZHENG Hua’an
罗成1(), 范晓勇2, 朱永红1, 田丰1, 崔楼伟3, 杜崇鹏1, 王飞利1, 李冬1(), 郑化安1()
通讯作者:
李冬,郑化安
作者简介:
罗成(1998—),男,硕士研究生,研究方向为煤焦油加氢反应器内构件数值模拟。E-mail:664265091@qq.com。
基金资助:
CLC Number:
LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549.
罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1872
参数 | 数值 | ||||
---|---|---|---|---|---|
实验1 | 实验2 | 实验3 | 实验4 | 实验5 | |
空气(气相)流量/m3·h-1 | 3.0 | 5.0 | 7.0 | 9.0 | 11.0 |
水(液相)流量/m3·h-1 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
入口温度/K | 298 | ||||
操作压力/MPa | 0.101 | ||||
气相密度/kg·m-3 | 1.30×10-3 | ||||
气相黏度/mPa·s | 17.9×10-3 | ||||
液体密度/kg·m-3 | 998 | ||||
液相黏度/mPa·s | 2.98 | ||||
表面张力系数/N·m-1 | 7.2×10-2 | ||||
重力加速度/m·s-2 | 9.81 |
参数 | 数值 | ||||
---|---|---|---|---|---|
实验1 | 实验2 | 实验3 | 实验4 | 实验5 | |
空气(气相)流量/m3·h-1 | 3.0 | 5.0 | 7.0 | 9.0 | 11.0 |
水(液相)流量/m3·h-1 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
入口温度/K | 298 | ||||
操作压力/MPa | 0.101 | ||||
气相密度/kg·m-3 | 1.30×10-3 | ||||
气相黏度/mPa·s | 17.9×10-3 | ||||
液体密度/kg·m-3 | 998 | ||||
液相黏度/mPa·s | 2.98 | ||||
表面张力系数/N·m-1 | 7.2×10-2 | ||||
重力加速度/m·s-2 | 9.81 |
水(液相)流量 /m3·h-1 | 空气(气相)流量 /m3·h-1 | 进出口压降/Pa | 相对误差 /% | |
---|---|---|---|---|
实验值[ | 模拟值 | |||
3.0 | 0.35 | 654 | 623 | 4.7 |
5.0 | 0.35 | 667 | 637 | 4.4 |
7.0 | 0.35 | 683 | 652 | 4.9 |
9.0 | 0.35 | 769 | 735 | 4.4 |
11.0 | 0.35 | 856 | 824 | 3.7 |
水(液相)流量 /m3·h-1 | 空气(气相)流量 /m3·h-1 | 进出口压降/Pa | 相对误差 /% | |
---|---|---|---|---|
实验值[ | 模拟值 | |||
3.0 | 0.35 | 654 | 623 | 4.7 |
5.0 | 0.35 | 667 | 637 | 4.4 |
7.0 | 0.35 | 683 | 652 | 4.9 |
9.0 | 0.35 | 769 | 735 | 4.4 |
11.0 | 0.35 | 856 | 824 | 3.7 |
参数 | 数值 |
---|---|
氢气(气相)流量/m3·h-1 | 41.5 |
LTCT(液相)流量/m3·h-1 | 2.90 |
入口温度/K | 503 |
操作压力/MPa | 14.0 |
气相密度/kg·m-3 | 6.29 |
气相黏度/mPa·s | 1.27×10-2 |
液体密度/kg·m-3 | 993 |
液相黏度/mPa·s | 62.7 |
表面张力系数/N·m-1 | 3.20×10-2 |
重力加速度/m·s-2 | 9.81 |
参数 | 数值 |
---|---|
氢气(气相)流量/m3·h-1 | 41.5 |
LTCT(液相)流量/m3·h-1 | 2.90 |
入口温度/K | 503 |
操作压力/MPa | 14.0 |
气相密度/kg·m-3 | 6.29 |
气相黏度/mPa·s | 1.27×10-2 |
液体密度/kg·m-3 | 993 |
液相黏度/mPa·s | 62.7 |
表面张力系数/N·m-1 | 3.20×10-2 |
重力加速度/m·s-2 | 9.81 |
1 | 姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507. |
YAO Chunlei, QUAN Hui, ZHANG Zhongqing. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507. | |
2 | YUAN Yang, LI Dong, ZHANG Linna, et al. Development, status, and prospects of coal tar hydrogenation technology[J]. Energy Technology, 2016, 4(11): 1338-1348. |
3 | XUE Fengfeng, LI Dong, GUO Yuting, et al. Technical progress and the prospect of low-rank coal pyrolysis in China[J]. Energy Technology, 2017, 5(11): 1897-1907. |
4 | LI Dong, CUI Wengang, ZHANG Xiangping, et al. Production of clean fuels by catalytic hydrotreating a low temperature coal tar distillate in a pilot-scale reactor[J]. Energy & Fuels, 2017, 31(10): 11495-11508. |
5 | XU Jian, YANG Yong, LI Yongwang. Recent development in converting coal to clean fuels in China[J]. Fuel, 2015, 152: 122-130. |
6 | YU Hang, LI Shuyuan, JIN Guangzhou. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel[J]. Energy & Fuels, 2010, 24(8): 4419-4424. |
7 | CUI Wengang, LI Wenhong, GAO Rong, et al. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3–SiO2 catalyst[J]. Energy & Fuels, 2017, 31(4): 3768-3783. |
8 | DU Chongpeng, LI Dong, SHI Chao, et al. Study on the association driving force of low temperature coal tar asphaltenes[J]. Journal of Molecular Structure, 2022, 1254: 132361. |
9 | ZHU Yonghong, DU Chongpeng, ZHENG Huaan, et al. Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry[J]. Arabian Journal of Chemistry, 2022, 15(1): 103531. |
10 | ZHU Yonghong, TIAN Feng, LIU Yaqing, et al. Comparison of the composition and structure for coal-derived and petroleum heavy subfraction by an improved separation method[J]. Fuel, 2021, 292: 120362. |
11 | BHASKAR M, VALAVARASU G, SAIRAM B, et al. Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6654-6669. |
12 | VAN HASSELT B W, LEBENS P J M, CALIS H P A, et al. A numerical comparison of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization[J]. Chemical Engineering Science, 1999, 54(21): 4791-4799. |
13 | ANCHEYTA J, SPEIGHT J G. Hydroprocessing of heavy oils and residua[J]. Journal of the Energy Institute, 2007,3: 184-184. |
14 | ALVAREZ Anton, ANCHEYTA Jorge, MUÑOZ José A D. Comparison of quench systems in commercial fixed-bed hydroprocessing reactors[J]. Energy & Fuels, 2007, 21(2): 1133-1144. |
15 | JAIN Ekta, Madhusudan SAU, BUWA Vivek V. Eulerian simulations of liquid distribution generated by chimney and bubble cap distributors[J]. Chemical Engineering Journal, 2021, 421: 127799. |
16 | ALVAREZ Anton, ANCHEYTA Jorge. Effect of liquid quenching on hydroprocessing of heavy crude oils in a fixed-bed reactor system[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1228-1236. |
17 | ALVAREZ Anton, Sergio RAMÍREZ, ANCHEYTA Jorge, et al. Key role of reactor internals in hydroprocessing of oil fractions[J]. Energy & Fuels, 2007, 21(3): 1731-1740. |
18 | MAITI R N, NIGAM K D P. Gas-liquid distributors for trickle-bed reactors: A review[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6164-6182. |
19 | LLAMAS Juan-David, LESAGE François, WILD Gabriel. Influence of gas flow rate on liquid distribution in trickle-beds using perforated plates as liquid distributors[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 7-11. |
20 | TSOCHATZIDIS N A, KARABELAS A J, GIAKOUMAKIS D, et al. An investigation of liquid maldistribution in trickle beds[J]. Chemical Engineering Science, 2002, 57(17): 3543-3555. |
21 | DU Wei, ZHANG Jianzhou, LU Panpan, et al. Advanced understanding of local wetting behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method[J]. Chemical Engineering Science, 2017, 170: 378-392. |
22 | SEDERMAN A J, GLADDEN L F. Magnetic resonance imaging as a quantitative probe of gas–liquid distribution and wetting efficiency in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(8): 2615-2628. |
23 | Frédéric BAZER-BACHI, HAROUN Yacine, AUGIER Frédéric, et al. Experimental evaluation of distributor technologies for trickle-bed reactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 11189-11197. |
24 | RAMAJO Damian Enrique, MARQUEZ DAMIAN Santiago, Marcela RAVICULÉ, et al. Flow study and wetting efficiency of a perforated-plate tray distributor in a trickle bed reactor[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 47-54. |
25 | MARCANDELLI C, LAMINE A S, BERNARD J R, et al. Liquid distribution in trickle-bed reactor[J]. Oil & Gas Science and Technology, 2000, 55(4): 407-415. |
26 | BAZMI M, HASHEMABADI S H, BAYAT M. CFD simulation and experimental study of liquid flow mal-distribution through the randomly trickle bed reactors[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 736-743. |
27 | LOPES Rodrigo J G, QUINTA-FERREIRA Rosa M. CFD modelling of multiphase flow distribution in trickle beds[J]. Chemical Engineering Journal, 2009, 147(2/3): 342-355. |
28 | HARTER Isabelle, BOYER Christophe, RAYNAL Ludovic, et al. Flow distribution studies applied to deep hydro-desulfurization[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5262-5267. |
29 | MARTÍNEZ M, PALLARES J, LÓPEZ J, et al. Numerical simulation of the liquid distribution in a trickle-bed reactor[J]. Chemical Engineering Science, 2012, 76: 49-57. |
30 | HEGGEMANN M, HIRSCHBERG S, SPIEGEL L, et al. CFD simulation and experimental validation of fluid flow in liquid distributors[J]. Chemical Engineering Research and Design, 2007, 85(1): 59-64. |
31 | SHENASTAGHI Fatemeh Keshavarz, ROSHDI Sepideh, KASIRI Norollah, et al. CFD simulation and experimental validation of bubble cap tray hydrodynamics[J]. Separation and Purification Technology, 2018, 192: 110-122. |
32 | 李立毅. 固定床气液分配器的性能建模与优化[D]. 太原: 太原理工大学, 2021. |
LI Liyi. Performance modeling and optimization of fixed-bed gas-liquid distributor[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
33 | 莫晗旸, 雍玉梅, 张广积, 等. 文丘里卷吸型气液分配器液体分配性能的结构参数研究[J]. 化工学报, 2021, 72(12): 6241-6253. |
MO Hanyang, YONG Yumei, ZHANG Guangji, et al. Study on the effects of structural parameters of bubble-cap distributor with Venturi downcomer on the liquid distribution performance[J]. CIESC Journal, 2021, 72(12): 6241-6253. | |
34 | 侯亚飞, 李伟, 柳士开, 等. 加氢反应器气液分配器数值模拟与结构优化[J]. 石油炼制与化工, 2018, 49(5): 97-102. |
HOU Yafei, LI Wei, LIU Shikai, et al. Numerical simulation and structure optimization of distributor in hydrogenation reactor[J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 97-102. | |
35 | 常天文, 杨景轩, 郝晓刚, 等. 气液分配器碎流板结构优化与数值模拟[J]. 天然气化工(C1化学与化工), 2021, 46(2): 93-97, 108. |
CHANG Tianwen, YANG Jingxuan, HAO Xiaogang, et al. Structural optimization and numerical simulation of stream breaker structure of gas-liquid distributor[J]. Natural Gas Chemical Industry, 2021, 46(2): 93-97, 108. | |
36 | DU Wei, LIU Wenming, XU Jian, et al. A novel modification of vapour-lift liquid distributor[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 109-115. |
37 | KLENOV O P, NOSKOV A S. Influence of input conditions on the flow distribution in trickle bed reactors[J]. Chemical Engineering Journal, 2020, 382: 122806. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[7] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[8] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[9] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[12] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[13] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[14] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[15] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |