Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3720-3735.DOI: 10.16085/j.issn.1000-6613.2022-1563
• Resources and environmental engineering • Previous Articles Next Articles
LI Yanling1(), ZHUO Zhen1, CHI Liang2, CHEN Xi1, SUN Tanglei1, LIU Peng1(), LEI Tingzhou1()
Received:
2022-08-23
Revised:
2022-12-21
Online:
2023-08-14
Published:
2023-07-15
Contact:
LIU Peng, LEI Tingzhou
李艳玲1(), 卓振1, 池亮2, 陈曦1, 孙堂磊1, 刘鹏1(), 雷廷宙1()
通讯作者:
刘鹏,雷廷宙
作者简介:
李艳玲(1992—),女,博士研究生,硕士生导师,研究方向为生物质资源化利用。E-mail:liyl@cczu.edu.cn。
基金资助:
CLC Number:
LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735.
李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1563
制备方法 | 优点 | 缺点 |
---|---|---|
原位掺杂法 | ||
活化 | 造孔性能优异、孔隙多为微孔 | 活化剂具有腐蚀性、工艺要求高、污染环境、反应机理复杂 |
水热 | 通过控制反应温度可以很好的调控含N官能团的种类和数量 | 孔隙少且多为中孔、结构不发达 |
热解 | 温度可调范围大、操作简单、炭产率高、N-Q含量高,最为常用 | 孔隙结构单一、比表面积有限、表面特征不理想 |
模板 | 可有效促进和严格把控NBC的孔隙结构和表面形态 | 去除模板剂造成浪费 |
后处理法 | N掺杂量较高、操作简单 | N掺杂不均匀、含N官能团数量少、掺杂效果不理想 |
制备方法 | 优点 | 缺点 |
---|---|---|
原位掺杂法 | ||
活化 | 造孔性能优异、孔隙多为微孔 | 活化剂具有腐蚀性、工艺要求高、污染环境、反应机理复杂 |
水热 | 通过控制反应温度可以很好的调控含N官能团的种类和数量 | 孔隙少且多为中孔、结构不发达 |
热解 | 温度可调范围大、操作简单、炭产率高、N-Q含量高,最为常用 | 孔隙结构单一、比表面积有限、表面特征不理想 |
模板 | 可有效促进和严格把控NBC的孔隙结构和表面形态 | 去除模板剂造成浪费 |
后处理法 | N掺杂量较高、操作简单 | N掺杂不均匀、含N官能团数量少、掺杂效果不理想 |
原料 | 制备方法 | SBET/m2·g-1 | Smic/m2·g-1 | Vtotal/cm3·g-1 | Vmic/cm3·g-1 | d/nm | 文献 |
---|---|---|---|---|---|---|---|
柚子皮 | 900℃热解 | 627.5 | 444.7 | 0.355 | 0.236 | 2.26 | [ |
豆浆 | CO2活化、热解 | 558.2 | 317.3 | 0.346 | 0.142 | 3.23 | [ |
芦苇 | 活化、热解 | 1074.0 | 489.0 | 0.996 | 0.543 | 1.85 | [ |
稻草 | 水热、活化、热解 | 2788.7 | — | 1.597 | 0.913 | — | [ |
稻草 | 活化、热解 | 2537.0 | — | 1.561 | — | — | [ |
椰壳 | ZnCl2活化、热解 | 1291.0 | — | 0.785 | 0.463 | 2.43 | [ |
原料 | 制备方法 | SBET/m2·g-1 | Smic/m2·g-1 | Vtotal/cm3·g-1 | Vmic/cm3·g-1 | d/nm | 文献 |
---|---|---|---|---|---|---|---|
柚子皮 | 900℃热解 | 627.5 | 444.7 | 0.355 | 0.236 | 2.26 | [ |
豆浆 | CO2活化、热解 | 558.2 | 317.3 | 0.346 | 0.142 | 3.23 | [ |
芦苇 | 活化、热解 | 1074.0 | 489.0 | 0.996 | 0.543 | 1.85 | [ |
稻草 | 水热、活化、热解 | 2788.7 | — | 1.597 | 0.913 | — | [ |
稻草 | 活化、热解 | 2537.0 | — | 1.561 | — | — | [ |
椰壳 | ZnCl2活化、热解 | 1291.0 | — | 0.785 | 0.463 | 2.43 | [ |
原料 | 温度 /℃ | 吡啶氮 /% | 吡咯氮 /% | 石墨化氮 /% | 吡啶型氧化氮 /% | 文献 |
---|---|---|---|---|---|---|
玉米秸秆 | 700 | 29.9 | 17.2 | 43.1 | 9.8 | [ |
竹渣 | 800 | 14.2 | 71.0 | 14.8 | — | [ |
木浆 | 900 | 44.3 | 19.5 | 36.2 | — | [ |
竹子 | 800 | 37.7 | 25.6 | 27.6 | 9.1 | [ |
水葫芦 | 800 | 43.2 | — | 56.8 | — | [ |
香蕉皮 | 600 | 26.2 | 38.5 | 35.3 | — | [ |
樟子松 | 600 | 37.7 | 46.5 | 15.8 | — | [ |
原料 | 温度 /℃ | 吡啶氮 /% | 吡咯氮 /% | 石墨化氮 /% | 吡啶型氧化氮 /% | 文献 |
---|---|---|---|---|---|---|
玉米秸秆 | 700 | 29.9 | 17.2 | 43.1 | 9.8 | [ |
竹渣 | 800 | 14.2 | 71.0 | 14.8 | — | [ |
木浆 | 900 | 44.3 | 19.5 | 36.2 | — | [ |
竹子 | 800 | 37.7 | 25.6 | 27.6 | 9.1 | [ |
水葫芦 | 800 | 43.2 | — | 56.8 | — | [ |
香蕉皮 | 600 | 26.2 | 38.5 | 35.3 | — | [ |
樟子松 | 600 | 37.7 | 46.5 | 15.8 | — | [ |
炭源 | 氮源 | 制备工艺 | N组分/% | N类型 | 作用 | 文献 |
---|---|---|---|---|---|---|
竹子 | NH3 | 热解 | 3.42 | N-5、N-6、N-Q、N-X | NBC作催化剂促进了苯酚的生成同时抑制了乙酸的产生,提高了产物产量和生物油的质量 | [ |
木屑 | 双氰胺 | 热解 | 20.32 | N-6、N-Q | NBC丰富的缺陷结构和N-Q、N-6表现出了较好的催化活性,可以有效降解苯酚、对乙酰氨基酚、磺胺甲𫫇唑 | [ |
玉米芯 | 三聚氰胺 | 水热炭化、热解 | 27.19 | N-5、N-6、N-Q | 氮掺杂技术提高了石墨化水平和N-5相对含量,从而促进了电导率,提高了微生物生物制氢的效率 | [ |
玉米芯 | 吡咯 | 热解、CO2活化 | 6.17 | N-Q、N-6 | 大量的N-Q提高了导电率和电催化活性,丰富的孔隙结构有效负载了Fe2O3,使其ORR催化性能优于商业的Pt/C催化剂 | [ |
苎麻树皮 | 尿素 | 活化、热解 | 2.12 | N-Q、N-5、N-6 | NBC中的N-Q、缺陷位点提供了四环素催化降解的活性位点,低阻抗和高的电子转移速率也是催化性高的关键 | [ |
葡萄糖 | 三聚氰胺 | 热解法 | — | N-Q | NBC负载Cu用作还原对硝基苯酚的催化剂,N-Q的π-π键促进了催化降解 | [ |
柚皮 | 三聚氰胺 | NaHCO3活化、热解 | 13.54 | N-5、N-Q | NBC的N结构作为过硫酸氢盐活化的活性中心,催化去除了磺胺甲𫫇唑等抗生素污染物 | [ |
炭源 | 氮源 | 制备工艺 | N组分/% | N类型 | 作用 | 文献 |
---|---|---|---|---|---|---|
竹子 | NH3 | 热解 | 3.42 | N-5、N-6、N-Q、N-X | NBC作催化剂促进了苯酚的生成同时抑制了乙酸的产生,提高了产物产量和生物油的质量 | [ |
木屑 | 双氰胺 | 热解 | 20.32 | N-6、N-Q | NBC丰富的缺陷结构和N-Q、N-6表现出了较好的催化活性,可以有效降解苯酚、对乙酰氨基酚、磺胺甲𫫇唑 | [ |
玉米芯 | 三聚氰胺 | 水热炭化、热解 | 27.19 | N-5、N-6、N-Q | 氮掺杂技术提高了石墨化水平和N-5相对含量,从而促进了电导率,提高了微生物生物制氢的效率 | [ |
玉米芯 | 吡咯 | 热解、CO2活化 | 6.17 | N-Q、N-6 | 大量的N-Q提高了导电率和电催化活性,丰富的孔隙结构有效负载了Fe2O3,使其ORR催化性能优于商业的Pt/C催化剂 | [ |
苎麻树皮 | 尿素 | 活化、热解 | 2.12 | N-Q、N-5、N-6 | NBC中的N-Q、缺陷位点提供了四环素催化降解的活性位点,低阻抗和高的电子转移速率也是催化性高的关键 | [ |
葡萄糖 | 三聚氰胺 | 热解法 | — | N-Q | NBC负载Cu用作还原对硝基苯酚的催化剂,N-Q的π-π键促进了催化降解 | [ |
柚皮 | 三聚氰胺 | NaHCO3活化、热解 | 13.54 | N-5、N-Q | NBC的N结构作为过硫酸氢盐活化的活性中心,催化去除了磺胺甲𫫇唑等抗生素污染物 | [ |
炭源 | 氮源 | 吸附质 | 制备工艺 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | N类型 | 机理 | 文献 |
---|---|---|---|---|---|---|---|---|
蓝藻 | 蓝藻 | CO2 | 热解 | 1148 | 0.52 | N-5、N-6、N-Q | 孔隙结构与N-Q提供了吸附CO2所需的活性位点 | [ |
椰壳 | 椰壳 | SO2 | CO2活化、水热炭化 | 706 | 0.45 | N-5、N-6、N-Q | SO2分子与含N官能团的静电作用N掺杂增强了炭基表面对SO2的吸附 | [ |
椰壳 | 尿素 | CO2 | K2CO3活化、后处理 | 1324 | 0.51 | N-5、N-6、N-Q | 高的比表面积和多种含N官能团共同促进了对CO2的吸附 | [ |
竹子 | 尿素 | 苯酚、亚甲基蓝 | KHCO3活化、热解 | 1693 | 0.90 | N-5、N-6、N-X | 含N官能团的引入增强了生物炭的表面活性,提高了对苯酚、亚甲基蓝的吸附量 | [ |
玉米秸秆 | 尿素 | 苯酚 | NaHCO3活化、热解 | 619 | 0.38 | N-6、N-Q | 微孔填充作用、N-6与苯酚分子间的Lewis酸碱相互作用、N-Q与苯酚分子形成π-π键 | [ |
玉米秸秆 | NH3 | Cu2+、Cd2+ | 热解 | 418 | 0.28 | N-Q | 阳离子π键和与炭表面N-Q和—OH的络合 | [ |
茶树 | 尿素 | Cu2+、Pb2+ | ZnCl2活化、水热炭化 | 63 | 0.30 | N-6、N-Q | 氢键、螯合作用、N-Q和—OH的表面络合作用提高了对重金属离子的吸附 | [ |
莲藕 | 莲藕 | 甲基橙 | N2氛围900℃热解4h | 693 | 0.38 | N-5、N-6、N-Q | 通过官能团和孔隙吸附作用吸附甲基橙 | [ |
腐殖酸 | 尿素 | Cd2+、As3+、As6+ | N2氛围700℃热解2h | 526 | — | N-Q、N-6 | 阳离子π键、N-Q和—OH的 络合 | [ |
炭源 | 氮源 | 吸附质 | 制备工艺 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | N类型 | 机理 | 文献 |
---|---|---|---|---|---|---|---|---|
蓝藻 | 蓝藻 | CO2 | 热解 | 1148 | 0.52 | N-5、N-6、N-Q | 孔隙结构与N-Q提供了吸附CO2所需的活性位点 | [ |
椰壳 | 椰壳 | SO2 | CO2活化、水热炭化 | 706 | 0.45 | N-5、N-6、N-Q | SO2分子与含N官能团的静电作用N掺杂增强了炭基表面对SO2的吸附 | [ |
椰壳 | 尿素 | CO2 | K2CO3活化、后处理 | 1324 | 0.51 | N-5、N-6、N-Q | 高的比表面积和多种含N官能团共同促进了对CO2的吸附 | [ |
竹子 | 尿素 | 苯酚、亚甲基蓝 | KHCO3活化、热解 | 1693 | 0.90 | N-5、N-6、N-X | 含N官能团的引入增强了生物炭的表面活性,提高了对苯酚、亚甲基蓝的吸附量 | [ |
玉米秸秆 | 尿素 | 苯酚 | NaHCO3活化、热解 | 619 | 0.38 | N-6、N-Q | 微孔填充作用、N-6与苯酚分子间的Lewis酸碱相互作用、N-Q与苯酚分子形成π-π键 | [ |
玉米秸秆 | NH3 | Cu2+、Cd2+ | 热解 | 418 | 0.28 | N-Q | 阳离子π键和与炭表面N-Q和—OH的络合 | [ |
茶树 | 尿素 | Cu2+、Pb2+ | ZnCl2活化、水热炭化 | 63 | 0.30 | N-6、N-Q | 氢键、螯合作用、N-Q和—OH的表面络合作用提高了对重金属离子的吸附 | [ |
莲藕 | 莲藕 | 甲基橙 | N2氛围900℃热解4h | 693 | 0.38 | N-5、N-6、N-Q | 通过官能团和孔隙吸附作用吸附甲基橙 | [ |
腐殖酸 | 尿素 | Cd2+、As3+、As6+ | N2氛围700℃热解2h | 526 | — | N-Q、N-6 | 阳离子π键、N-Q和—OH的 络合 | [ |
炭源 | 氮源 | 制备工艺 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 储能器类型 | 产品特性 | 文献 |
---|---|---|---|---|---|---|---|
麦秸秆 | 三聚氰胺 | KCl和ZnCl2作为盐模板 | 1201 | 1.02 | 超级电容器 | 可逆比电容223F/g(0.5A/g),次循电容保持率91.4%(10000) | [ |
稻秸秆 | 尿素 | K2CO3活化、水热、热解 | 2800 | 1.60 | 超级电容器 | 可逆比电容380F/g(0.5A/g),电容保持率95.4%(10000) | [ |
漆籽纤维 | 铁氰化钾 | 预炭化、高温活化 | 407 | 0.39 | 超级电容器 | 可逆比电容324F/g(0.2A/g),3000电容保持率97.0%(3000) | [ |
香菇 | 香菇 | KOH活化、浸泡 | 1930 | 0.86 | 超级电容器 | 比电容为325F/g(0.5A/g),电容保持率为97.7%(5000) | [ |
菜籽饼 | 三聚氰胺 | K2CO3活化、热解 | 2050 | 1.13 | 超级电容器 | 比电容274F/g(0.05A/g),电容保持率96.0%(10000) | [ |
头发 | 头发 | 热解、活化 | 1617 | 0.70 | 钠离子电池 | 可逆比电容为700mAh/g(0.13C) | [ |
木耳 | 木耳 | 冻干、热解 | 1568 | — | 锂硫电池 | 可逆比电容为875mAh/g(0.20C) | [ |
木材 | 三聚氰胺 | 熔融盐模板、热解 | 621 | 0.34 | 锂氧电池 | 放电比电容为9.44mA·h/cm2(0.05mA/cm2),可循环113次(0.5mA/cm2) | [ |
炭源 | 氮源 | 制备工艺 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 储能器类型 | 产品特性 | 文献 |
---|---|---|---|---|---|---|---|
麦秸秆 | 三聚氰胺 | KCl和ZnCl2作为盐模板 | 1201 | 1.02 | 超级电容器 | 可逆比电容223F/g(0.5A/g),次循电容保持率91.4%(10000) | [ |
稻秸秆 | 尿素 | K2CO3活化、水热、热解 | 2800 | 1.60 | 超级电容器 | 可逆比电容380F/g(0.5A/g),电容保持率95.4%(10000) | [ |
漆籽纤维 | 铁氰化钾 | 预炭化、高温活化 | 407 | 0.39 | 超级电容器 | 可逆比电容324F/g(0.2A/g),3000电容保持率97.0%(3000) | [ |
香菇 | 香菇 | KOH活化、浸泡 | 1930 | 0.86 | 超级电容器 | 比电容为325F/g(0.5A/g),电容保持率为97.7%(5000) | [ |
菜籽饼 | 三聚氰胺 | K2CO3活化、热解 | 2050 | 1.13 | 超级电容器 | 比电容274F/g(0.05A/g),电容保持率96.0%(10000) | [ |
头发 | 头发 | 热解、活化 | 1617 | 0.70 | 钠离子电池 | 可逆比电容为700mAh/g(0.13C) | [ |
木耳 | 木耳 | 冻干、热解 | 1568 | — | 锂硫电池 | 可逆比电容为875mAh/g(0.20C) | [ |
木材 | 三聚氰胺 | 熔融盐模板、热解 | 621 | 0.34 | 锂氧电池 | 放电比电容为9.44mA·h/cm2(0.05mA/cm2),可循环113次(0.5mA/cm2) | [ |
1 | 孙书晶, 曾旭. 生物质热解炭化及其资源利用进展[J]. 化工设计通讯, 2017, 43(4): 207. |
SUN Shujing, ZENG Xu. Biomass pyrolysis carbonization and its resource utilization[J]. Chemical Engineering Design Communications, 2017, 43(4): 207. | |
2 | LIU Wujun, TIAN Ke, HE Yanrong, et al. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environmental Science & Technology, 2014, 48(23): 13951-13959. |
3 | ATINAFU D G, YUN Beom Yeol, KIM Young Uk, et al. Introduction of eicosane into biochar derived from softwood and wheat straw: Influence of porous structure and surface chemistry[J]. Chemical Engineering Journal, 2021, 415: 128887. |
4 | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN Minfei, GAO Kaifang, YU Houping. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. | |
5 | LIU Yun, XU Huanghui, YU Hongfei, et al. Synthesis of lignin-derived nitrogen-doped carbon as a novel catalyst for 4-NP reduction evaluation[J]. Scientific Reports, 2020, 10(1): 1-14. |
6 | ZHANG Zhicheng, CHEN Luxi, WANG Jiang, et al. Biochar preparation from Solidago canadensis and its alleviation of the inhibition of tomato seed germination by allelochemicals[J]. RSC Advances, 2018, 8(40): 22370-22375. |
7 | CHENG Binhai, ZENG R J, JIANG Hong. Recent developments of post-modification of biochar for electrochemical energy storage[J]. Bioresource Technology, 2017, 246: 224-233. |
8 | 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 2281-2287. |
JI Haiyang, WANG Yuying, LIU Yuxue, et al. Advance in preparation and application of biochar and modified biochar research[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2281-2287. | |
9 | 刘影影. 生物质热解炭的高值化利用研究[D]. 杭州: 浙江大学, 2019. |
LIU Yingying. Research on high-value utilization of biomass pyrolytic carbon[D]. Hangzhou: Zhejiang University, 2019. | |
10 | LIU Huachen, ZHANG Feng, WU Zhaofeng, et al. Nitrogen-doped porous carbon derived from cellulose microfibers of rice straw for high-performance electrodes of supercapacitors[J]. Energy & Fuels, 2021, 35(12): 10190-10198. |
11 | WAN Zhonghao, SUN Yuqing, TSANG Daniel C W, et al. Customised fabrication of nitrogen-doped biochar for environmental and energy applications[J]. Chemical Engineering Journal, 2020, 401: 126136. |
12 | LIU Chao, CHEN Liwei, DING Dahu, et al. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor[J]. Applied Catalysis B: Environmental, 2019, 254: 312-320. |
13 | SUI Long, TANG Chunyu, DU Qing, et al. Preparation and characterization of boron-doped corn straw biochar: Fe( ) removal equilibrium and kinetics[J]. Journal of Environmental Sciences, 2021, 106: 116-123. |
14 | LIU Fangyan, WANG Zixing, ZHANG Haitao, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149: 105-116. |
15 | DING Dahu, YANG Shengjiong, QIAN Xiaoyong, et al. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant[J]. Applied Catalysis B: Environmental, 2020, 263: 118348. |
16 | MA Linlin, HU Xiao, LIU Wujun, et al. Constructing N,P-dually doped biochar materials from biomass wastes for high-performance bifunctional oxygen electrocatalysts[J]. Chemosphere, 2021, 278: 130508. |
17 | SUO Fengyue, YOU Xiangwei, MA Yongqiang, et al. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism[J]. Chemosphere, 2019, 235: 918-925. |
18 | 张月. 生物炭的氧化还原机制及其环境应用[D]. 上海: 上海交通大学, 2019. |
ZHANG Yue. Redox mechanism of biochar and its environmental application[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
19 | LI Dan, CHEN Wenhua, WU Jianping, et al. The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: Focus on N functional groups[J]. Journal of Materials Chemistry A, 2020, 8(47): 24977-24995. |
20 | YUE Limin, XIA Qiongzhang, WANG Liwei, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science, 2018, 511: 259-267. |
21 | WANG He, WANG Han, LIU Guoshuai, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: Role of the intrinsic N[J]. Science of the Total Environment, 2021, 771: 145424. |
22 | LIANG Hongxu, SUN Ruru, SONG Bin, et al. Preparation of nitrogen-doped porous carbon material by a hydrothermal-activation two-step method and its high-efficiency adsorption of Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 387: 121987. |
23 | ZHOU Yunlong, WANG Jian, SUN Meng, et al. Adsorption of CO2 by nitrogen doped corn straw based biochar[J]. Arabian Journal of Geosciences, 2021, 14(18): 1875. |
24 | ZHANG Shun, TIAN Ke, CHENG Binhai, et al. Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6682-6691. |
25 | ZHANG Jishi, YANG Mengchen, ZHAO Wenqian, et al. Biohydrogen production amended with nitrogen-doped biochar[J]. Energy & Fuels, 2021, 35(2): 1476-1487. |
26 | 余正发, 王旭珍, 刘宁, 等. N掺杂多孔碳材料研究进展[J]. 化工进展, 2013, 32(4): 824-831. |
YU Zhengfa, WANG Xuzhen, LIU Ning, et al. Recent progress of N-doped porous carbon materials[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 824-831, 862. | |
27 | CHEN Zuo, ZHANG Man, WANG Yuchen, et al. Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors[J]. Green Energy & Environment, 2021, 6(6): 929-937. |
28 | 郭莎莎. 茶树废弃枝条制备氮掺杂碳材料对重金属离子的吸附与检测[D]. 杨凌: 西北农林科技大学, 2020. |
GUO Shasha. Preparation of camellia sinensis waste branch-derived N-doped carbon materials and its applications on heavy metal adsorption and detection[D]. Yangling: Northwest A & F University, 2020. | |
29 | YU Shuai, ZHU Xinqiang, LOU Gaobo, et al. Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor[J]. Materials & Design, 2018, 149: 184-193. |
30 | MOU Xiaoling, MA Jiaxin, ZHENG Shuanghao, et al. A general synthetic strategy toward highly doped pyridinic nitrogen‐rich carbons[J]. Advanced Functional Materials, 2021, 31(3): 2006076. |
31 | CHAROENSOOK K, HUANG Chengliang, TAI Hungchun, et al. Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120: 246-256. |
32 | LI Qiaoyan, HOU Yaqin, WANG Jiancheng, et al. Superiority of raw biomass and potassium hydroxide in preparation of ultrahigh nitrogen doping of carbon for NH3-SCR reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(30): 11308-11316. |
33 | HU Zhonghua, SRINIVASAN M P, NI Yaming. Novel activation process for preparing highly microporous and mesoporous activated carbons[J]. Carbon, 2001, 39(6): 877-886. |
34 | CHENG Hu, JI Rongting, BIAN Yongrong, et al. From macroalgae to porous graphitized nitrogen-doped biochars—Using aquatic biota to treat polycyclic aromatic hydrocarbons-contaminated water[J]. Bioresource Technology, 2020, 303: 122947. |
35 | 任秀丽. 氯化锌活化法制备多孔碳材料及其性能研究[D]. 延吉: 延边大学, 2015. |
REN Xiuli. Preparation of porous carbon materials by ZnCl2 activation and the study on its properties[D]. Yanji: Yanbian University, 2015. | |
36 | 朱晓, 张立强, 张梦泽, 等. 水热法制备氮掺杂多孔炭及其在气体吸附/电化学储能中的应用[J]. 燃烧科学与技术, 2020, 26(5): 413-422. |
ZHU Xiao, ZHANG Liqiang, ZHANG Mengze, et al. Preparation of N-doped porous carbon by hydrothermal method and its application in gas adsorption/electrochemical energy storage[J]. Journal of Combustion Science and Technology, 2020, 26(5): 413-422. | |
37 | LI Ning, HE Mengting, LU Xukai, et al. Municipal solid waste derived biochars for wastewater treatment: Production, properties and applications[J]. Resources, Conservation and Recycling, 2022, 177: 106003. |
38 | LI Yunchao, XING Bo, WANG Xiaoliu, et al. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption[J]. Energy & Fuels, 2019, 33(12): 12459-12468. |
39 | WANG Junrui, WAN Feng, LU Qiufeng, et al. Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance[J]. Journal of Materials Science & Technology, 2018, 34(10): 1959-1968. |
40 | LI Zhenhao, XING Bo, DING Yan, et al. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2872-2880. |
41 | CHEN Xiangying, CHEN Chong, ZHANG Zhongjie, et al. Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors[J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10181-10188. |
42 | 陈彰旭, 郑炳云, 李先学, 等. 模板法制备纳米材料研究进展[J]. 化工进展, 2010, 29(1): 94-99. |
CHEN Zhangxu, ZHENG Bingyun, LI Xianxue, et al. Progress in the preparation of nanomaterials employing template method[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 94-99. | |
43 | HUANG Shuqiong, DING Yan, LI Yunchao, et al. Nitrogen and sulfur co-doped hierarchical porous biochar derived from the pyrolysis of mantis shrimp shell for supercapacitor electrodes[J]. Energy & Fuels, 2021, 35(2): 1557-1566. |
44 | 陈金辉. 氮掺杂炭负载钌催化剂的制备及其催化加氢性能研究[D]. 杭州: 浙江工业大学, 2020. |
CHEN Jinhui. Effect of nitrogen-doping on hydrogenation performance of carbon supported ruthenium catalyst[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
45 | GENG Zhen, XIAO Qiangfeng, Hong LYU, et al. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture[J]. Scientific Reports, 2016, 6: 30049. |
46 | ZHANG Xiaodi, XU Ying, ZHANG Guojie, et al. Nitrogen-doped porous carbons derived from sustainable biomass via a facile post-treatment nitrogen doping strategy: Efficient CO2 capture and DRM[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24388-24397. |
47 | XU Xiaoyun, ZHENG Yulin, GAO Bin, et al. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red[J]. Chemical Engineering Journal, 2019, 368: 564-572. |
48 | PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27. |
49 | FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950. |
50 | DING Yan, LI Yunchao, DAI Yujie, et al. A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors[J]. Energy, 2021, 216: 119227. |
51 | WANG Zhen, TAN Yongtao, YANG Yunlong, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors[J]. Journal of Power Sources, 2018, 378: 499-510. |
52 | WANG Li, YAN Wei, HE Chi, et al. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18[J]. Applied Surface Science, 2018, 433: 222-231. |
53 | 马晓, 秦晓伟, 张晓娣, 等. 氮掺杂生物质碳材料催化剂的制备及其催化CH4-CO2重整性能[J]. 洁净煤技术, 2022, 28(5): 59-70. |
MA Xiao, QIN Xiaowei, ZHANG Xiaodi, et al. Preparation of biomass nitrogen-doped carbon material catalyst and its catalytic performance for CO2 reforming of CH4 [J]. Clean Coal Technology, 2022, 28(5): 59-70. | |
54 | WEI Xianjun, JIANG Xiaoqiang, WEI Jishi, et al. Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors[J]. Chemistry of Materials, 2016, 28(2): 445-458. |
55 | SARAVANAN K R, KALAISELVI N. Nitrogen containing bio-carbon as a potential anode for lithium batteries[J]. Carbon, 2015, 81: 43-53. |
56 | CHEN Xiangying, CHEN Chong, ZHANG Zhongjie, et al. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability[J]. Journal of Power Sources, 2013, 230: 50-58. |
57 | LIU Tao, ZHOU Hanfeng, LAN Yingying, et al. Preparation of high-performance, three-dimensional, hierarchical porous carbon supercapacitor materials and high-value-added potassium humate from cotton stalks[J]. Diamond and Related Materials, 2021, 116: 108375. |
58 | ZHANG Ji, SHANG Tongxin, JIN Xiaojuan, et al. Study of chromium (Ⅵ) removal from aqueous solution using nitrogen-enriched activated carbon based bamboo processing residues[J]. RSC Advances, 2015, 5(1): 784-790. |
59 | HUANG Peng, ZHANG Peng, WANG Cuiping, et al. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar[J]. Applied Catalysis B: Environmental, 2022, 303: 120926. |
60 | CHEN Wei, YANG Haiping, CHEN Yingquan, et al. Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 186-193. |
61 | LIANG Jiaxiang, TANG Diyong, HUANG Li, et al. High oxygen reduction reaction performance nitrogen-doped biochar cathode: A strategy for comprehensive utilizing nitrogen and carbon in water hyacinth[J]. Bioresource Technology, 2018, 267: 524-531. |
62 | RONG Xing, XIE Meng, KONG Lingshuai, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation[J]. Chemical Engineering Journal, 2019, 372: 294-303. |
63 | WANG Xiaoliu, LIU Yingying, ZHU Lingjun, et al. Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation[J]. Journal of CO2 Utilization, 2019, 34: 733-741. |
64 | SUN Kangkang, SUN Jialin, LU Guoping, et al. Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water[J]. Green Chemistry, 2019, 21(16): 4334-4340. |
65 | 李宇明, 刘梓烨, 张启扬, 等. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932. |
LI Yuming, LIU Ziye, ZHANG Qiyang, et al. Preparation of nitrogen-doped carbon materials and their applications in catalysis[J]. CIESC Journal, 2021, 72(8): 3919-3932. | |
66 | XIA Dongsheng, TANG Fei, YAO Xiaozhang, et al. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode[J]. Carbon, 2020, 162: 300-307. |
67 | 陈宇卓, 王哲, 毛善俊, 等. 基于氮掺杂多孔炭的加氢催化剂的理性设计[J]. 催化学报, 2019, 40(7): 971-979. |
CHEN Yuzhuo, WANG Zhe, MAO Shanjun, et al. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon[J].Chinese Journal of Catalysis, 2019, 40(7): 971-979. | |
68 | CHEN Wei, FANG Yang, LI Kaixu, et al. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products[J]. Applied Energy, 2020, 260: 114242. |
69 | XU Lu, WU Chenxi, LIU Peihua, et al. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2020, 387: 124065. |
70 | YAN Wei, WU Yanling, CHEN Yanli, et al. Facile preparation of N-doped corncob-derived carbon nanofiber efficiently encapsulating Fe2O3 nanocrystals towards high ORR electrocatalytic activity[J]. Journal of Energy Chemistry, 2020, 44: 121-130. |
71 | YE Shujing, ZENG Guangming, TAN Xiaofei, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Applied Catalysis B: Environmental, 2020, 269: 118850. |
72 | CHO Dong Wan, KIM Sohyun, TSANG Yiu Fai, et al. Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol[J]. Environmental Geochemistry and Health, 2019, 41(4): 1729-1737. |
73 | WANG Wenqi, CHEN Ming. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates[J]. Journal of Colloid and Interface Science, 2022, 613: 57-70. |
74 | YU Wenchao, LIAN Fei, CUI Guannan, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution[J]. Chemosphere, 2018, 193: 8-16. |
75 | HOU Yanrui, LIANG Ye, HU Hongbo, et al. Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies[J]. Bioresource Technology, 2021, 329: 124877. |
76 | LIN Shiwei, YANG Xiong, LIU Lihu, et al. Electrosorption of cadmium and arsenic from wastewaters using nitrogen-doped biochar: Mechanism and application[J]. Journal of Environmental Management, 2022, 301: 113921. |
77 | QU Zhibin, SUN Fei, LIU Xin, et al. The effect of nitrogen-containing functional groups on SO2 adsorption on carbon surface: Enhanced physical adsorption interactions[J]. Surface Science, 2018, 677: 78-82. |
78 | 金振宇, 李曈, 陆安慧. 富氮多级孔炭材料的制备及其吸附分离CO2的性能[J]. 物理化学学报, 2015, 31(8): 1602-1608. |
JIN Zhenyu, LI Tong, LU Anhui. Nitrogen-enriched hierarchical porous carbon for carbon dioxide adsorption and separation[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1602-1608. | |
79 | WAN Zeqing, LI Kunquan. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption[J]. Chemosphere, 2018, 194: 370-380. |
80 | KASERA N, KOLAR P, HALL S G. Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: A review[J]. Biochar, 2022, 4(17): 1-30. |
81 | LIU Jingjiang, DENG Yuanfu, LI Xuehui, et al. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors[J]. ACS sustainable chemistry & engineering, 2016, 4(1): 177-187. |
82 | LEE Whonhee, MOON Jun Hyuk. Monodispersed N-doped carbon nanospheres for supercapacitor application[J].ACS Applied Materials & Interfaces, 2014, 6(16): 13968-13976. |
83 | SEREDYEH M, HULICOVA-JURCAKOVA D, LU Gaoqing, et a1. Surface functional groups of carbons and the effects of their chemical character,density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11): 1475-1488. |
84 | JUREWICZ K, BABEL K, ZIOLKOWSKI A . et a1 . Ammoxidation of active carbons for improvement of supercapacitor characteristics[J]. Electrochim Acta, 2003, 48(11): 1491-1498. |
85 | ZHENG Fangcai, LIU Dong, XIA Guoliang, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 693: 1197-1204. |
86 | JING Shengyu, GAI Zejia, LI Moxi, et al. Enhanced electrochemical performance of a Li-O2 battery using Co and N co-doped biochar cathode prepared in molten salt medium[J]. Electrochimica Acta, 2022, 410: 140002. |
87 | 江帆. 石墨化和氮元素掺杂生物炭制备及其电化学性能研究[D]. 杨凌: 西北农林科技大学, 2021. |
JIANG Fan. Study on preparation and electrochemical performance of graphitized and nitrogen-doped biochar[D]. Yangling: Northwest A & F University, 2021. | |
88 | 胡青桃, 张文达, 李涛, 等. 香菇生物质基氮掺杂微孔碳材料的制备及其在超级电容器中的应用[J]. 无机化学学报, 2020, 36(8): 1573-1581. |
HU Qingtao, ZHANG Wenda, LI Tao, et al. Preparation and application in supercapacitors of shiitake biomass-based nitrogen-doped microporous carbon[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1573-1581. | |
89 | 毕宏晖, 焦帅, 魏风, 等. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888. |
BI Honghui, JIAO Shuai, WEI Feng, et al. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888. | |
90 | GU Xingxing, LI Hui, WEN Hongyu, et al. From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li-S batteries[J]. Journal of Materials Science, 2020, 55(3): 1136-1147. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[11] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[14] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |