Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3501-3509.DOI: 10.16085/j.issn.1000-6613.2022-1687
• Energy processes and technology • Previous Articles Next Articles
Received:
2022-09-13
Revised:
2023-01-02
Online:
2023-08-14
Published:
2023-07-15
Contact:
SONG Fang
通讯作者:
宋钫
作者简介:
冯江涵(1998—),女,硕士研究生,研究方向为能源电催化。E-mail:feng_jiangh@sjtu.edu.cn。
基金资助:
CLC Number:
FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509.
冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1687
1 | XU D Y, STEVENS M B, MONTY R, et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells[J]. ACS Catalysis, 2019, 9(1): 7-15. |
2 | FRIEDLINGSTEIN P, ANDREW R M, ROGELJ J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets[J]. Nature Geoscience, 2014, 7(10): 709-715. |
3 | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
4 | URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
5 | LUO Yuting, ZHANG Zhiyuan, CHHOWALLA Manish, et al. Recent advances in design of electrocatalysts for high-current-density water splitting[J]. Advanced Materials, 2022, 34(16): 2108133. |
6 | TONG Wenming, FORSTER Mark, DIONIGI Fabio, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5): 367-377. |
7 | VINCENT Immanuel, BESSARABOV Dmitri. Low cost hydrogen production by anion exchange membrane electrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
8 | HU Congling, ZHANG Lei, GONG Jinlong. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy & Environmental Science, 2019, 12(9): 2620-2645. |
9 | DTU, & Dong Energy. Pre-investigation of water electrolysis[R]. Water, 2008(2): 1-195. |
10 | MILLET P, MBEMBA N, GRIGORIEV S A, et al. Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4134-4142. |
11 | BERNT M, HARTIG-WEIß A, TOVINI M F, et al. Current challenges in catalyst development for PEM water electrolyzers[J]. Chemie Ingenieur Technik, 2020, 92(1/2): 31-39. |
12 | LIM A, CHO M K, LEE S Y, et al. A review of industrially developed components and operation conditions for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Science and Technology, 2017, 8(4): 265-273. |
13 | CHO M K, LIM A, LEE S Y, et al. A review on membranes and catalysts for anion exchange membrane water electrolysis single cells[J]. Journal of Electrochemical Science and Technology, 2017, 8(3): 183-196. |
14 | LAMY C, MILLET P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions[J]. Journal of Power Sources, 2020, 447: 227350. |
15 | PAVEL C C, CECCONI F, EMILIANI C, et al. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis[J]. Angewandte Chemie International Edition, 2014, 53(5): 1378-1381. |
16 | ZENG L, ZHAO T S. Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis[J]. Nano Energy, 2015, 11: 110-118. |
17 | PARK J E, KANG S Y, OH S H, et al. High-performance anion-exchange membrane water electrolysis[J]. Electrochimica Acta, 2019, 295: 99-106. |
18 | CHOI W S, JANG M J, PARK Y S, et al. Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38663-38668. |
19 | WU Xu, SCOTT Keith. Cu x Co3- x O4 (0≤x<1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers[J]. Journal of Materials Chemistry, 2011, 21(33): 12344-12351. |
20 | AHN S H, LEE B S, CHOI I, et al. Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers[J]. Applied Catalysis B: Environmental, 2014, 154/155: 197-205. |
21 | SEETHARAMAN S, BALAJI R, RAMYA K, et al. Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14934-14942. |
22 | AN L, ZHAO T S, CHAI Z H, et al. Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(35): 19869-19876. |
23 | XIAO Li, ZHANG Shuai, PAN Jing, et al. First implementation of alkaline polymer electrolyte water electrolysis working only with pure water[J]. Energy & Environmental Science, 2012, 5(7): 7869. |
24 | KACZUR J J, YANG H Z, LIU Z C, et al. Carbon dioxide and water electrolysis using new alkaline stable anion membranes[J]. Frontiers in Chemistry, 2018, 6: 263. |
25 | CHEN N J, PAEK S Y, LEE J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7.68A·cm-2 and a durability of 1000 hours[J]. Energy & Environmental Science, 2021, 14: 6338-6348. |
26 | HENKENSMEIER Dirk, NAJIBAH Malikah, HARMS Corinna, et al. Overview: State-of-the art commercial membranes for anion exchange membrane water electrolysis[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 024001. |
27 | VOGEL Claus, Jochen MEIER-HAACK. Preparation of ion-exchange materials and membranes[J]. Desalination, 2014, 342: 156-174. |
28 | LU Shanfu, PAN Jing, HUANG Aibin, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20611-20614. |
29 | MERLE Géraldine, WESSLING Matthias, NIJMEIJER Kitty. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1): 1-35. |
30 | LIN C X, ZHUO Y Z, LAI A N, et al. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells[J]. Journal of Membrane Science, 2016, 513: 206-216. |
31 | LI D G, MATANOVIC I, LEE A S, et al. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer[J]. ACS Applied Materials Interfaces, 2019, 11(10): 9696-9701. |
32 | FARAJ Marco, BOCCIA Massimiliano, MILLER Hamish, et al. New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(20): 14992-15002. |
33 | VARCOE J R, ATANASSOV P, DEKEL D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
34 | PARRONDO J, ARGES C G, NIEDZWIECKI M, et al. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis[J]. RSC Advances, 2014, 4(19): 9875-9879. |
35 | FAID A Y, XIE L, BARNETT A O, et al. Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28272-28284. |
36 | Sebastian OTT, ORFANIDI Alin, SCHMIES Henrike, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85. |
37 | KOMKOVA E N, STAMATIALIS D F, STRATHMANN H, et al. Anion-exchange membranes containing diamines: Preparation and stability in alkaline solution[J]. Journal of Membrane Science, 2004, 244(1): 25-34. |
38 | PHAM T H, OLSSON J S, JANNASCH P. N-spirocyclic quaternary ammonium ionenes for anion-exchange membranes[J]. Journal of the American Chemical Society, 2017, 139(8): 2888-2891. |
39 | LI D G, PARK E J, ZHU W L, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
40 | ZHAO Tuo, LONG Chuan, WANG Zhiqian, et al. Multication cross-linked poly(p-terphenyl isatin) anion exchange membranes for fuel cells: Effect of cross-linker length on membrane performance[J]. ACS Applied Energy Materials, 2021, 4(12): 14476-14487. |
41 | DU Naiying, ROY Claudie, PEACH Retha, et al. Anion-exchange membrane water electrolyzers[J]. Chemical Reviews, 2022, 122(13): 11830-11895. |
42 | ITO Hiroshi, MIYAZAKI Naoki, SUGIYAMA Shota, et al. Investigations on electrode configurations for anion exchange membrane electrolysis[J]. Journal of Applied Electrochemistry, 2018, 48(3): 305-316. |
43 | MILLER H A, BOUZEK K, HNAT J, et al. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions[J]. Sustainable Energy & Fuels, 2020, 4(5): 2114-2133. |
44 | RAZMJOOEI Fatemeh, MORAWIETZ Tobias, TAGHIZADEH Ehsan, et al. Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer[J]. Joule, 2021, 5(7): 1776-1799. |
45 | MOLLER T, THANH T N, WANG X L, et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2 [J]. Energy & Environmental Science, 2021, 14: 5995-6006. |
46 | AILI D, HANSEN M K, ANDREASEN J W, et al. Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis[J]. Journal of Membrane Science, 2015, 493: 589-598. |
47 | LIU Z C, SAJJAD S D, GAO Y, et al. The effect of membrane on an alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29661-29665. |
48 | CHEN G C, WONDIMU T H, HUANG H C, et al. Microwave-assisted facile synthesis of cobaltiron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10174-10181. |
49 | LIM A, KIM H J, HENKENSMEIER D, et al. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 410-418. |
50 | VINCENT Immanuel. Hydrogen production by water electrolysis with an ultrathin anion-exchange membrane (AEM)[J]. International Journal of Electrochemical Science, 2018, 13: 11347-11358. |
51 | HNAT Jaromír, PAIDAR Martin, SCHAUER Jan, et al. Polymer anion-selective membrane for electrolytic water splitting: The impact of a liquid electrolyte composition on the process parameters and long-term stability[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4779-4787. |
52 | XIAO J W, OLIVEIRA A M, WANG L, et al. Water-fed hydroxide exchange membrane electrolyzer enabled by a fluoride-incorporated nickel-iron oxyhydroxide oxygen evolution electrode[J]. ACS Catalysis, 2021, 11(1): 264-270. |
53 | XU Q C, OENER S Z, LINDQUIST G, et al. Integrated reference electrodes in anion-exchange-membrane electrolyzers: Impact of stainless-steel gas-diffusion layers and internal mechanical pressure[J]. ACS Energy Letters, 2021, 6(2): 305-312. |
54 | PARK Y S, JEONG J, NOH Y, et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts[J]. Applied Catalysis B: Environmental, 2021, 292: 120170. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |