Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 3187-3196.DOI: 10.16085/j.issn.1000-6613.2022-1498
• Fine chemicals • Previous Articles Next Articles
YANG Jiatian1(), TANG Jinming1, LIANG Zirong2, LI Yinhong1, HU Huayu2, CHEN Yuan1()
Received:
2022-08-15
Revised:
2022-11-22
Online:
2023-06-29
Published:
2023-06-25
Contact:
CHEN Yuan
杨家添1(), 唐金铭1, 梁恣荣2, 黎胤宏1, 胡华宇2, 陈渊1()
通讯作者:
陈渊
作者简介:
杨家添(1965—),男,高级实验师,研究方向为淀粉改性。E-mail:yjt8682@163.com。
基金资助:
CLC Number:
YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196.
杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1498
水平 | 因素 | ||||
---|---|---|---|---|---|
反应温度 /℃ | 中和度 /% | 淀粉与 丙烯酸摩尔比 | 引发剂用量 /g | 交联剂用量 /g | |
1 | 40 | 60 | 0.5∶1 | 0.6 | 0.03 |
2 | 50 | 70 | 0.75∶1 | 0.9 | 0.05 |
3 | 60 | 80 | 1∶1 | 1.2 | 0.07 |
4 | 70 | 90 | 1∶0.75 | 1.5 | 0.09 |
水平 | 因素 | ||||
---|---|---|---|---|---|
反应温度 /℃ | 中和度 /% | 淀粉与 丙烯酸摩尔比 | 引发剂用量 /g | 交联剂用量 /g | |
1 | 40 | 60 | 0.5∶1 | 0.6 | 0.03 |
2 | 50 | 70 | 0.75∶1 | 0.9 | 0.05 |
3 | 60 | 80 | 1∶1 | 1.2 | 0.07 |
4 | 70 | 90 | 1∶0.75 | 1.5 | 0.09 |
球磨时间(tg) /h | 单体转化率(α) /% | 接枝率(G) /% | 接枝效率(GE) /% |
---|---|---|---|
1 | 36.46 | 21.26 | 68.47 |
2 | 56.64 | 29.56 | 70.69 |
3 | 96.81 | 42.35 | 81.36 |
4 | 85.42 | 38.76 | 78.26 |
5 | 69.51 | 33.99 | 74.21 |
球磨时间(tg) /h | 单体转化率(α) /% | 接枝率(G) /% | 接枝效率(GE) /% |
---|---|---|---|
1 | 36.46 | 21.26 | 68.47 |
2 | 56.64 | 29.56 | 70.69 |
3 | 96.81 | 42.35 | 81.36 |
4 | 85.42 | 38.76 | 78.26 |
5 | 69.51 | 33.99 | 74.21 |
实验序号 | 反应温度/℃ | 中和度/% | 淀粉与丙烯酸摩尔比 | 引发剂用量/g | 交联剂用量/g | 黏度/mPa·s | 吸水率/g·g-1 |
---|---|---|---|---|---|---|---|
1 | 1(40) | 1(60) | 1(0.5∶1) | 1(0.6) | 1(0.03) | 90 | 19.53 |
2 | 1(40) | 2(70) | 2(0.75∶1) | 2(0.9) | 2(0.05) | 300 | 80.43 |
3 | 1(40) | 3(80) | 3(1∶1) | 3(1.2) | 3(0.07) | 330 | 77.49 |
4 | 1(40) | 4(90) | 4(1∶0.75) | 4(1.5) | 4(0.09) | 150 | 12.38 |
5 | 2(50) | 1(60) | 2(0.75∶1) | 3(1.2) | 4(0.09) | 170 | 20.88 |
6 | 2(50) | 2(70) | 1(0.5∶1) | 4(1.5) | 3(0.07) | 160 | 25.12 |
7 | 2(50) | 3(80) | 4(1∶0.75) | 1(0.6) | 2(0.05) | 290 | 72.73 |
8 | 2(50) | 4(90) | 3(1∶1) | 2(0.9) | 1(0.03) | 510 | 78.26 |
9 | 3(60) | 1(60) | 3(1∶1) | 4(1.5) | 2(0.05) | 430 | 90.59 |
10 | 3(60) | 2(70) | 4(1∶0.75) | 3(1.2) | 1(0.03) | 240 | 55.62 |
11 | 3(60) | 3(80) | 1(1∶1) | 2(0.9) | 4(0.09) | 320 | 59.82 |
12 | 3(60) | 4(90) | 2(0.75∶1) | 1(0.6) | 3(0.07) | 200 | 42.12 |
13 | 4(70) | 1(60) | 4(1∶0.75) | 2(0.9) | 3(0.07) | 240 | 35.15 |
14 | 4(70) | 2(70) | 3(1∶1) | 1(0.6) | 4(0.09) | 240 | 71.36 |
15 | 4(70) | 3(80) | 2(0.75∶1) | 4(1.5) | 1(0.03) | 220 | 38.59 |
16 | 4(70) | 4(90) | 1(0.5∶1) | 3(1.2) | 2(0.05) | 260 | 60.17 |
K1 | 217.5 | 232.5 | 208 | 205 | 265 | 黏度极差分析 | |
K2 | 282.5 | 235 | 223 | 342.5 | 320 | ||
K3 | 297.5 | 290 | 378 | 250 | 232.5 | ||
K4 | 240 | 280 | 230 | 240 | 220 | ||
R1 | 80 | 57.5 | 170 | 137.5 | 100 | ||
K5 | 52.6775 | 41.5375 | 41.16 | 51.435 | 48 | 吸水率极差分析 | |
K6 | 49.2475 | 58.1325 | 45.505 | 63.415 | 75.98 | ||
K7 | 62.0375 | 62.1575 | 79.425 | 53.54 | 44.97 | ||
K8 | 51.3175 | 48.2325 | 43.97 | 41.67 | 41.11 | ||
R2 | 12.79 | 20.62 | 38.265 | 21.745 | 34.87 |
实验序号 | 反应温度/℃ | 中和度/% | 淀粉与丙烯酸摩尔比 | 引发剂用量/g | 交联剂用量/g | 黏度/mPa·s | 吸水率/g·g-1 |
---|---|---|---|---|---|---|---|
1 | 1(40) | 1(60) | 1(0.5∶1) | 1(0.6) | 1(0.03) | 90 | 19.53 |
2 | 1(40) | 2(70) | 2(0.75∶1) | 2(0.9) | 2(0.05) | 300 | 80.43 |
3 | 1(40) | 3(80) | 3(1∶1) | 3(1.2) | 3(0.07) | 330 | 77.49 |
4 | 1(40) | 4(90) | 4(1∶0.75) | 4(1.5) | 4(0.09) | 150 | 12.38 |
5 | 2(50) | 1(60) | 2(0.75∶1) | 3(1.2) | 4(0.09) | 170 | 20.88 |
6 | 2(50) | 2(70) | 1(0.5∶1) | 4(1.5) | 3(0.07) | 160 | 25.12 |
7 | 2(50) | 3(80) | 4(1∶0.75) | 1(0.6) | 2(0.05) | 290 | 72.73 |
8 | 2(50) | 4(90) | 3(1∶1) | 2(0.9) | 1(0.03) | 510 | 78.26 |
9 | 3(60) | 1(60) | 3(1∶1) | 4(1.5) | 2(0.05) | 430 | 90.59 |
10 | 3(60) | 2(70) | 4(1∶0.75) | 3(1.2) | 1(0.03) | 240 | 55.62 |
11 | 3(60) | 3(80) | 1(1∶1) | 2(0.9) | 4(0.09) | 320 | 59.82 |
12 | 3(60) | 4(90) | 2(0.75∶1) | 1(0.6) | 3(0.07) | 200 | 42.12 |
13 | 4(70) | 1(60) | 4(1∶0.75) | 2(0.9) | 3(0.07) | 240 | 35.15 |
14 | 4(70) | 2(70) | 3(1∶1) | 1(0.6) | 4(0.09) | 240 | 71.36 |
15 | 4(70) | 3(80) | 2(0.75∶1) | 4(1.5) | 1(0.03) | 220 | 38.59 |
16 | 4(70) | 4(90) | 1(0.5∶1) | 3(1.2) | 2(0.05) | 260 | 60.17 |
K1 | 217.5 | 232.5 | 208 | 205 | 265 | 黏度极差分析 | |
K2 | 282.5 | 235 | 223 | 342.5 | 320 | ||
K3 | 297.5 | 290 | 378 | 250 | 232.5 | ||
K4 | 240 | 280 | 230 | 240 | 220 | ||
R1 | 80 | 57.5 | 170 | 137.5 | 100 | ||
K5 | 52.6775 | 41.5375 | 41.16 | 51.435 | 48 | 吸水率极差分析 | |
K6 | 49.2475 | 58.1325 | 45.505 | 63.415 | 75.98 | ||
K7 | 62.0375 | 62.1575 | 79.425 | 53.54 | 44.97 | ||
K8 | 51.3175 | 48.2325 | 43.97 | 41.67 | 41.11 | ||
R2 | 12.79 | 20.62 | 38.265 | 21.745 | 34.87 |
蒸发 时间/h | 不同质量分数抑尘剂条件下尘样含湿率 | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
1 | 46.21 | 65.43 | 70.59 | 77.87 | 79.35 | 68.39 |
2 | 33.62 | 50.21 | 62.38 | 65.40 | 43.81 | 36.43 |
3 | 18.55 | 38.46 | 44.71 | 50.88 | 23.70 | 19.27 |
4 | 8.71 | 21.57 | 30.22 | 36.62 | 12.25 | 8.22 |
5 | 3.23 | 9.83 | 17.50 | 23.06 | 6.24 | 1.20 |
6 | 0.75 | 2.68 | 5.43 | 11.26 | 2.51 | 0.73 |
7 | 0.05 | 0.21 | 1.21 | 6.85 | 0.89 | 0.41 |
蒸发 时间/h | 不同质量分数抑尘剂条件下尘样含湿率 | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
1 | 46.21 | 65.43 | 70.59 | 77.87 | 79.35 | 68.39 |
2 | 33.62 | 50.21 | 62.38 | 65.40 | 43.81 | 36.43 |
3 | 18.55 | 38.46 | 44.71 | 50.88 | 23.70 | 19.27 |
4 | 8.71 | 21.57 | 30.22 | 36.62 | 12.25 | 8.22 |
5 | 3.23 | 9.83 | 17.50 | 23.06 | 6.24 | 1.20 |
6 | 0.75 | 2.68 | 5.43 | 11.26 | 2.51 | 0.73 |
7 | 0.05 | 0.21 | 1.21 | 6.85 | 0.89 | 0.41 |
标准筛目数 | 不同质量掺量抑尘剂条件下粒径分布量/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
40目以上 | 9.91 | 28.95 | 31.21 | 38.93 | 22.89 | 13.22 |
40~60目之间 | 5.16 | 9.78 | 11.73 | 15.85 | 11.26 | 7.72 |
60~80目之间 | 5.63 | 6.57 | 6.84 | 7.28 | 6.34 | 5.96 |
80~100目之间 | 9.52 | 4.32 | 5.11 | 7.92 | 9.91 | 11.72 |
100~120目之间 | 11.84 | 8.69 | 10.31 | 4.93 | 10.83 | 12.03 |
120目以下 | 57.95 | 41.83 | 34.91 | 25.16 | 37.81 | 49.46 |
标准筛目数 | 不同质量掺量抑尘剂条件下粒径分布量/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
40目以上 | 9.91 | 28.95 | 31.21 | 38.93 | 22.89 | 13.22 |
40~60目之间 | 5.16 | 9.78 | 11.73 | 15.85 | 11.26 | 7.72 |
60~80目之间 | 5.63 | 6.57 | 6.84 | 7.28 | 6.34 | 5.96 |
80~100目之间 | 9.52 | 4.32 | 5.11 | 7.92 | 9.91 | 11.72 |
100~120目之间 | 11.84 | 8.69 | 10.31 | 4.93 | 10.83 | 12.03 |
120目以下 | 57.95 | 41.83 | 34.91 | 25.16 | 37.81 | 49.46 |
风速/ m·s-1 | 不同质量掺量抑尘剂样品条件下尘样抑尘率/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
9 | 30.62 | 54.30 | 90.36 | 96.40 | 83.74 | 55.13 |
12 | 5.44 | 24.25 | 37.31 | 66.51 | 45.22 | 30.32 |
15 | 2.30 | 2.53 | 10.43 | 38.39 | 12.34 | 5.14 |
风速/ m·s-1 | 不同质量掺量抑尘剂样品条件下尘样抑尘率/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
9 | 30.62 | 54.30 | 90.36 | 96.40 | 83.74 | 55.13 |
12 | 5.44 | 24.25 | 37.31 | 66.51 | 45.22 | 30.32 |
15 | 2.30 | 2.53 | 10.43 | 38.39 | 12.34 | 5.14 |
1 | SRAM R J, BINKOVA B, DOSTAL M, et al. Health impact of air pollution to children[J]. International Journal of Hygiene and Environmental Health, 2013, 216(5): 533-540. |
2 | 李廷昆, 冯银厂, 毕晓辉, 等. 城市扬尘污染主要成因与精准治尘思路[J]. 环境科学, 2022, 43(3): 1323-1331. |
LI Tingkun, FENG Yinchang, BI Xiaohui, et al. Main problems and refined solutions of urban fugitive dust pollution in China[J]. Environmental Science, 2022, 43(3): 1323-1331. | |
3 | BAO Qiu, NIE Wen, LIU Changqi, et al. The preparation of a novel hydrogel based on crosslinked polymers for suppressing coal dusts[J]. Journal of Cleaner Production, 2020, 249: 119343. |
4 | MA Yunlong, ZHOU Gang, DING Jianfei, et al. Preparation and characterization of an agglomeration-cementing agent for dust suppression in open pit coal mining[J]. Cellulose, 2018, 25(7): 4011-4029. |
5 | 张桂锋. 高吸水树脂的特性及在抑尘领域的应用研究进展[J]. 化学工程师, 2018, 32(3): 46-48. |
ZHANG Guifeng. Characteristics of high power absorbent resin and its application in the field of dust suppression[J]. Chemical Engineer, 2018, 32(3): 46-48. | |
6 | 陈渊, 杨家添, 黄祖强, 等. 机械活化固相化学反应制备木薯醋酸酯淀粉[J]. 食品与发酵工业, 2013, 39(7): 135-141. |
CHEN Yuan, YANG Jiatian, HUANG Zuqiang, et al. Preparation for cassava starch acetate by mechanical activation-strengthened solid phase chemical reaction[J]. Food and Fermentation Industries, 2013, 39(7): 135-141. | |
7 | 陈渊, 杨家添, 谢秋季, 等. 木薯羧甲基淀粉的机械活化固相化学法制备、表征及其特性[J]. 食品科学, 2018, 39(2): 45-52. |
CHEN Yuan, YANG Jiatian, XIE Qiuji, et al. Preparation, structural characterization and properties of carboxymethyl cassava starch by mechanical activation-assisted solid-state reaction[J]. Food Science, 2018, 39(2): 45-52. | |
8 | 郭庆兴, 童群义. 交联羟丙基羧甲基木薯淀粉性质的研究[J]. 食品工业科技, 2012, 33(23): 122-124, 128. |
GUO Qingxing, TONG Qunyi. Study on properties of cross-linking hydroxypropyl carboxymethyl starch[J]. Science and Technology of Food Industry, 2012, 33(23): 122-124, 128. | |
9 | 郭雅妮, 李金成, 惠璠, 等. 超声辅助法制备风化煤腐植酸-丙烯酸吸水树脂[J]. 功能材料, 2020, 51(4): 4164-4169. |
GUO Yani, LI Jincheng, HUI Fan, et al. Preparation of humic acid-acrylic acid absorbent resin from weathered coal by ultrasonic-assisted method[J]. Journal of Functional Materials, 2020, 51(4): 4164-4169. | |
10 | 舒陈华, 陈爽. 淀粉与丙烯酸接枝共聚反应的研究[J]. 五邑大学学报(自然科学版), 2006, 20(2): 67-70, 78. |
SHU Chenhua, CHEN Shuang. A study of graft polymerization of acrylic acid and starch[J]. Journal of Wuyi University (Natural Science Edition), 2006, 20(2): 67-70, 78. | |
11 | 于栋. 低温调堵剂淀粉接枝聚丙烯酰胺的合成及评价[D]. 东营: 中国石油大学(华东), 2013: 17. |
YU Dong. The synthesis and evaluation of low temperature profile control and water shutoff agent starch grafted polyacrylamide[D]. Dongying: China University of Petroleum (Huadong), 2013: 17. | |
12 | 李云涛. 不同配比高倍吸水树脂抑尘剂抑尘效果研究[J]. 西部交通科技, 2008(2): 97-100. |
LI Yuntao. Research on the dust control effect of high-power water absorbing resin dust depressors of different mixture ratios[J]. Western China Communications Science & Technology, 2008(2): 97-100. | |
13 | 白向兵. 新型抑尘剂的合成与应用研究——以西安市为例[D]. 西安: 长安大学, 2006: 59-60. |
BAI Xiangbing. Study on synthesis and application of the new dust-depressor—Taking Xi’an city as an example[D]. Xi’an: Changan University, 2006: 59-60. | |
14 | SUN Jian, ZHOU Gang, GAO Danhong, et al. Preparation and performance characterization of a composite dust suppressant for preventing secondary dust in underground mine roadways[J]. Chemical Engineering Research and Design, 2020, 156: 195-208. |
15 | 黄祖强, 陈渊, 梁兴唐, 等. 机械活化对木薯淀粉的直链淀粉含量及抗性淀粉形成的影响[J]. 高校化学工程学报, 2007, 21(3): 471-476. |
HUANG Zuqiang, CHEN Yuan, LIANG Xingtang, et al. Effects of mechanical activation on amylose content and resistant starch formation of cassava starch[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(3): 471-476. | |
16 | 谭义秋, 黄祖强, 农克良. 高取代度木薯羧甲基淀粉的合成及表征[J]. 过程工程学报, 2010, 10(1): 173-178. |
TAN Yiqiu, HUANG Zuqiang, NONG Keliang. Synthesis and characterization of high degree of substitution cassava carboxymethyl starch[J]. The Chinese Journal of Process Engineering, 2010, 10(1): 173-178. | |
17 | 王宇. 咖啡壳纤维素接枝丙烯酸合成高吸水树脂的研究[D]. 昆明: 昆明理工大学, 2017: 51-52. |
WANG Yu. Study on synthesis of super absorbent resin by graft acrylic acid from cellulose in coffee shell[D]. Kunming: Kunming University of Science and Technology, 2017: 51-52. | |
18 | 韩明迪. 氧化淀粉接枝丙烯酸丙烯酰胺抑尘剂的合成与应用研究[D]. 北京: 北京化工大学, 2009: 29. |
HAN Mingdi. Synthesis and application of graft copolymer of oxidized starch with acrylic acid an acrylamide[D]. Beijing: Beijing University of Chemical Technology, 2009: 29. | |
19 | 赵月. 淀粉复合丙烯酸制备耐盐型高吸水树脂的工艺研究[D]. 沈阳: 沈阳化工大学, 2018: 34. |
ZHAO Yue. Study on preparation of salt resistant super absorbent resin by starch composite acrylic acid[D]. Shenyang: Shenyang University of Chemical Technology, 2018: 34. | |
20 | 陈利维, 陈慧, 戴睿, 等. 碱溶解玉米淀粉制备高吸水性树脂[J]. 精细化工, 2019, 36(10): 2109-2115. |
CHEN Liwei, CHEN Hui, DAI Rui, et al. Preparation of superabsorbent polymers by dissolving corn starch with alkali[J]. Fine Chemicals, 2019, 36(10): 2109-2115. | |
21 | 田光磊. 丙烯酸系高吸水树脂微球的制备及性能研究[D]. 广州: 仲恺农业工程学院, 2016: 34. |
TIAN Guanglei. Studies on the preparation and properties of acrylic acid superabsorbent polymer microspheres[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2016: 34. | |
22 | 吴景梅, 张毅, 陶冬平. 淀粉接枝丙烯酸-丙烯酰胺三元共聚物的制备与性能研究[J]. 商丘师范学院学报, 2018, 34(3): 26-29. |
WU Jingmei, ZHANG Yi, TAO Dongping. Preparation and properties of copolymer by starch grafting acrylic acid and acrylamide[J]. Journal of Shangqiu Normal University, 2018, 34(3): 26-29. | |
23 | 李林, 黄小华. 丙烯酸接枝淀粉的制备及其印花性能[J]. 纺织学报, 2013, 34(3): 93-97. |
LI Lin, HUANG Xiaohua. Preparation and printing properties of acrylic acid grafted starch[J]. Journal of Textile Research, 2013, 34(3): 93-97. | |
24 | SHI Linfan, ZHONG Li, ZHANG Bin, et al. Encapsulation and release characteristics of ethylene gas from V6-and V7-type crystalline starches[J]. International Journal of Biological Macromolecules, 2020, 156: 10-17. |
25 | 郭武, 谢忠杰. 高倍吸水树脂对抑制粉尘污染的研究[J]. 湖南安全与防灾, 2013(3): 48-49. |
GUO Wu, XIE Zhongjie. Study on dust pollution control by high power water absorbent resin[J]. Hunan Safety and Disaster Prevention, 2013(3): 48-49. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[5] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[6] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[7] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[8] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[9] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[10] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[11] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[12] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[13] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
[14] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[15] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |