Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2353-2370.DOI: 10.16085/j.issn.1000-6613.2022-1322
• Industrial catalysis • Previous Articles Next Articles
FU Shurong1(), WANG Lina1, WANG Dongwei2, LIU Rui2, ZHANG Xiaohui2, MA Zhanwei2()
Received:
2022-07-14
Revised:
2022-09-07
Online:
2023-06-02
Published:
2023-05-10
Contact:
FU Shurong, MA Zhanwei
符淑瑢1(), 王丽娜1, 王东伟2, 刘蕊2, 张晓慧2, 马占伟2()
通讯作者:
符淑瑢,马占伟
作者简介:
符淑瑢(1990—),女,博士,副教授,研究方向为光电催化。E-mail:shurongfu@126.com。
基金资助:
CLC Number:
FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370.
符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1322
序号 | 光阳极 | 电解液 | 光源 | 偏压 | 光电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|---|---|
1 | FeOOH/BiVO4 | 0.1mol/L KH2PO4 | AM 1.5G,100mW/cm2 | 1.2VRHE | 1.7 | [ |
2 | FeOOH QDs/ZnO | 0.1mol/L磷酸盐缓冲液(pH=7) | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.44 | [ |
3 | FeOOH/H-TiO2 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.6 | [ |
4 | α-FeOOH晶体/BiVO4 | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.64 | [ |
5 | β-FeOOH/BiVO4 | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.3 | [ |
6 | FeP/Ti-Fe2O3 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.9 | [ |
7 | FeF x /Fe2O3 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.4 | [ |
8 | CoOOH/BiVO4 | 0.5mol/L Na2SO4+0.2mol/L K3PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.0 | [ |
9 | CoOOH/TiO2 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.3 | [ |
10 | CoP/BiVO4 | 硼酸盐缓冲液 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.0 | [ |
11 | CoP/Fe2O3 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.54 | [ |
12 | MnO2/TiO2 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.95 | [ |
13 | PtO/ZnO | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.3 | [ |
14 | CeO x /Fe2O3 | 1mol/LNaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.6 | [ |
15 | NiCo2O4/Mo:BiVO4 | 0.5mol/L KH2PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.5 | [ |
16 | CoNiO2/BiVO4 | 0.5mol/L Na2SO4 | 500W Xenon lamps | 1.23VRHE | 1.16 | [ |
17 | NiFeOOH/BiVO4 | 0.5mol/L K3BO3 | AM 1.5G,100mW/cm2 | 1.23VRHE | 5.8 | [ |
18 | FeCoW/W:BiVO4 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.49 | [ |
19 | CoFePi/Ti-Fe2O3 | 0.1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.75 | [ |
20 | FeOOH/Ag/BiVO4 | 0.1mol/L磷酸盐缓冲液(pH=7) | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.19 | [ |
21 | NiOOH/FeOOH/CQD/BiVO4 | KH2PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 5.99 | [ |
22 | NiOOH/ZnWO4/ZnO | 0.02mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.7 | [ |
23 | NiOOH/FeOOH/BiVO4/rGO/V2O5 | 0.5mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.5VAg/AgCl | 3.06 | [ |
序号 | 光阳极 | 电解液 | 光源 | 偏压 | 光电流密度/mA·cm-2 | 参考文献 |
---|---|---|---|---|---|---|
1 | FeOOH/BiVO4 | 0.1mol/L KH2PO4 | AM 1.5G,100mW/cm2 | 1.2VRHE | 1.7 | [ |
2 | FeOOH QDs/ZnO | 0.1mol/L磷酸盐缓冲液(pH=7) | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.44 | [ |
3 | FeOOH/H-TiO2 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.6 | [ |
4 | α-FeOOH晶体/BiVO4 | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.64 | [ |
5 | β-FeOOH/BiVO4 | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.3 | [ |
6 | FeP/Ti-Fe2O3 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.9 | [ |
7 | FeF x /Fe2O3 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.4 | [ |
8 | CoOOH/BiVO4 | 0.5mol/L Na2SO4+0.2mol/L K3PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.0 | [ |
9 | CoOOH/TiO2 | 1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.3 | [ |
10 | CoP/BiVO4 | 硼酸盐缓冲液 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.0 | [ |
11 | CoP/Fe2O3 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.54 | [ |
12 | MnO2/TiO2 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.95 | [ |
13 | PtO/ZnO | 0.2mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 2.3 | [ |
14 | CeO x /Fe2O3 | 1mol/LNaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.6 | [ |
15 | NiCo2O4/Mo:BiVO4 | 0.5mol/L KH2PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 4.5 | [ |
16 | CoNiO2/BiVO4 | 0.5mol/L Na2SO4 | 500W Xenon lamps | 1.23VRHE | 1.16 | [ |
17 | NiFeOOH/BiVO4 | 0.5mol/L K3BO3 | AM 1.5G,100mW/cm2 | 1.23VRHE | 5.8 | [ |
18 | FeCoW/W:BiVO4 | 1mol/L NaOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 0.49 | [ |
19 | CoFePi/Ti-Fe2O3 | 0.1mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.75 | [ |
20 | FeOOH/Ag/BiVO4 | 0.1mol/L磷酸盐缓冲液(pH=7) | AM 1.5G,100mW/cm2 | 1.23VRHE | 3.19 | [ |
21 | NiOOH/FeOOH/CQD/BiVO4 | KH2PO4 | AM 1.5G,100mW/cm2 | 1.23VRHE | 5.99 | [ |
22 | NiOOH/ZnWO4/ZnO | 0.02mol/L KOH | AM 1.5G,100mW/cm2 | 1.23VRHE | 1.7 | [ |
23 | NiOOH/FeOOH/BiVO4/rGO/V2O5 | 0.5mol/L Na2SO4 | AM 1.5G,100mW/cm2 | 1.5VAg/AgCl | 3.06 | [ |
1 | FUJISHIMA AKIRA, HONDA KENICHI. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
2 | 符淑瑢, 张勤生, 鲁金芝, 等. ZnO基光电极的构筑及其光电催化水分解性能研究进展[J]. 化工进展, 2021, 40(3): 1413-1424. |
FU Shurong, ZHANG Qinsheng, LU Jinzhi, et al. Research progress of fabrication of ZnO-based photoanode and photoelectrocatalytic water splitting performances[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1413-1424. | |
3 | LEE Joo-Won, CHO Ki-Hyun, YOON Joon-Soo, et al. Photoelectrochemical water splitting using one-dimensional nanostructures[J]. Journal of Materials Chemistry A, 2021, 9(38): 21576-21606. |
4 | 张文华, 佃丽雯, 陈海燕, 等. 氧化钨(WO3)薄膜光电催化性能的改善及应用[J]. 化工进展, 2020, 39(2): 521-532. |
ZHANG Wenhua, DIAN Liwen, CHEN Haiyan, et al. Improvement on the photoelectrocatalytic performance of tungsten oxide (WO3) thin film and its application prospects[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 521-532. | |
5 | GRIMAUD Alexis, Oscar DIAZ-MORALES, HAN Binghong, et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nature Chemistry, 2017, 9(5): 457-465. |
6 | DING Chunmei, SHI Jingying, WANG Zhiliang, et al. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces[J]. ACS Catalysis, 2017, 7(1): 675-688. |
7 | ZHONG Miao, HISATOMI Takashi, KUANG Yongbo, et al. Surface modification of CoO x loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation[J]. Journal of the American Chemical Society, 2015, 137(15): 5053-5060. |
8 | David TILLEY S, CORNUZ Maurin, SIVULA Kevin, et al. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis[J]. Angewandte Chemie, 2010, 122(36): 6549-6552. |
9 | YANG Jinhui, Walczak Karl, Anzenberg Eitan, et al. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces[J]. Journal of the American Chemical Society, 2014, 136(17): 6191-6194. |
10 | David TILLEY S, SCHREIER Marcel, AZEVEDO João, et al. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes[J]. Advanced Functional Materials, 2014, 24(3): 303-311. |
11 | CHEMELEWSKI William D, LEE Heung-Chan, LIN Jung-Fu, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2014, 136(7): 2843-2850. |
12 | SEABOLD Jason A, CHOI Kyoung-Shin. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2012, 134(4): 2186-2192. |
13 | ZHAN Faqi, YANG Yahui, LIU Wenhua, et al. Facile synthesis of FeOOH quantum dots modified ZnO nanorods films via a metal-solating process[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7789-7798. |
14 | PANZERI G, DELL’ORO R, PANZERI A, et al. FeOOH modified H-TiO2 nanorods array (NRA) for stable and improved low-bias photoelectrochemical water splitting[J]. Journal of the Electrochemical Society, 2021, 168(8): 086505. |
15 | ZHANG Wen, MA Jiani, XIONG Lunqiao, et al. Well-crystallized α-FeOOH cocatalysts modified BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting[J]. ACS Applied Energy Materials, 2020, 3(6): 5927-5936. |
16 | ZHANG Beibei, WANG Lei, ZHANG Yajun, et al. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation[J]. Angewandte Chemie International Edition, 2018, 57(8): 2248-2252. |
17 | LUO Wenjun, JIANG Chaoran, LI Yaomin, et al. Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(5): 2021-2028. |
18 | XIONG Dehua, LI Wei, WANG Xiaoguang, et al. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation[J]. Nanotechnology, 2016, 27(37): 375401. |
19 | BU Qijing, LI Shuo, WU Qiannan, et al. In situ synthesis of FeP-decorated Ti-Fe2O3: An effective strategy to improve the interfacial charge transfer in the photoelectrochemical water oxidation reaction[J]. Catalysis Science & Technology, 2019, 9(20): 5812-5818. |
20 | FENG Chenchen, WANG Lei, FU Shurong, et al. Ultrathin FeF x nanolayers accelerating hole transfer for enhanced photoelectrochemical water oxidation[J]. Journal of Materials Chemistry A, 2018, 6(40): 19342-19346. |
21 | WANG Youwei, QIU Wujie, SONG Erhong, et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications[J]. National Science Review, 2018, 5(3): 327-341. |
22 | ZHONG Diane K, SUN Jianwei, INUMARU Hiroki, et al. Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes[J]. Journal of the American Chemical Society, 2009, 131(17): 6086-6087. |
23 | ZHONG Diane K, CHOI Sujung, GAMELIN Daniel R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4 [J]. Journal of the American Chemical Society, 2011, 133(45): 18370-18377. |
24 | NELLIST Michael, QIU Jingjing, LASKOWSKI Forrest A L, et al. Potential-sensing electrochemical AFM shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes[J]. ACS Energy Letters, 2018, 3(9): 2286-2291. |
25 | DING Chunmei, SHI Jingying, WANG Donge, et al. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Physical Chemistry Chemical Physics, 2013, 15(13): 4589-4595. |
26 | LIAO Maijia, FENG Jianyong, LUO Wenjun, et al. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode[J]. Advanced Functional Materials, 2012, 22(14): 3066-3074. |
27 | BERGMANN Arno, Elias MARTINEZ-MORENO, TESCHNER Detre, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J]. Nature Communications, 2015, 6(1): 8625. |
28 | YANG Jinhui, COOPER Jason K, TOMA Francesca M, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes[J]. Nature Materials, 2017, 16(3): 335-341. |
29 | WANG Pengpeng, FU Ping, MA Jiangping, et al. Ultrathin cobalt oxide interlayer facilitated hole storage for sustained water oxidation over composited tantalum nitride photoanodes[J]. ACS Catalysis, 2021, 11(20): 12736-12744. |
30 | WANG Hsin-Yi, HUNG Sung-Fu, CHEN Hanyi, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4 [J]. Journal of the American Chemical Society, 2016, 138(1): 36-39. |
31 | TANG Fumin, CHENG Weiren, SU Hui, et al. Smoothing surface trapping states in 3D coral-like CoOOH-wrapped-BiVO4 for efficient photoelectrochemical water oxidation[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6228-6234. |
32 | REN Xiangrong, JI Yujin, ZHAI Yiyue, et al. Self-assembled CoOOH on TiO2 for enhanced photoelectrochemical water oxidation[J]. Journal of Energy Chemistry, 2021, 60: 512-521. |
33 | TONG Haili, JIANG Yi, ZHANG Qian, et al. Boosting photoelectrochemical water oxidation with cobalt phosphide nanosheets on porous BiVO4 [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 769-778. |
34 | KIM Jin Hyun, HAN Suenghoon, Yim Hyun JO, et al. A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode[J]. Journal of Materials Chemistry A, 2018, 6(3): 1266-1274. |
35 | JIANG Daochuan, ZHANG Lei, YUE Qiudi, et al. Efficient suppression of surface charge recombination by CoP-modified nanoporous BiVO4 for photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15517-15525. |
36 | QUANG Nguyen Duc, HU Weiguang, CHANG Hyo Sik, et al. Fe2O3 hierarchical tubular structure decorated with cobalt phosphide (CoP) nanoparticles for efficient photoelectrochemical water splitting[J]. Chemical Engineering Journal, 2021, 417: 129278. |
37 | MA Yuli, HU Yun hang. Efficient Ni(OH)2/WO3 photoanode for photoelectrocatalytic water splitting at low bias[J]. The Journal of Physical Chemistry C, 2020, 124(36): 19447-19456. |
38 | XU Dandan, FU Zewen, WANG Dejun, et al. A Ni(OH)2-modified Ti-doped α-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: The role of Ni(OH)2 as a cocatalyst[J]. Physical Chemistry Chemical Physics, 2015, 17(37): 23924-23930. |
39 | WANG Gongming, LING Yichuan, LU Xihong, et al. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation[J]. Nanoscale, 2013, 5(10): 4129-4133. |
40 | MALARA Francesco, MINGUZZI Alessandro, MARELLI Marcello, et al. α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation[J]. ACS Catalysis, 2015, 5(9): 5292-5300. |
41 | RONG Jiayue, WANG Zhenzhen, LV Jiaqi, et al. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting[J]. Chinese Journal of Catalysis, 2021, 42(11): 1999-2009. |
42 | QIU Ping, LI Fei, ZHANG Hongda, et al. Photoelectrochemical performance of α-Fe2O3@NiOOH fabricated with facile photo-assisted electrodeposition method[J]. Electrochimica Acta, 2020, 358: 136847. |
43 | ZHUANG Changwan, SONG Zhiyuan, YU Zhuobin, et al. Photoelectrochemical performance of TiO2 nanotube arrays modified with Ni2P co-catalyst[J]. International Journal of Hydrogen Energy, 2021, 46(7): 4981-4991. |
44 | WEN Peng, SU Feijing, LI Hui, et al. A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting[J]. Chemical Engineering Journal, 2020, 385: 123878. |
45 | CHENG Xiang, DONG Guojun, ZHANG Yajun, et al. Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting[J]. Applied Catalysis B: Environmental, 2020, 267: 118723. |
46 | FU Shurong, ZHANG Beibei, HU Hongyan, et al. ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting[J]. Catalysis Science & Technology, 2018, 8(11): 2789-2793. |
47 | AHMED Mahmoud G, ZHANG Mengyuan, Ying Fan TAY, et al. Surface modification of hematite photoanodes with CeO x cocatalyst for improved photoelectrochemical water oxidation kinetics[J]. ChemSusChem, 2020, 13(20): 5489-5496. |
48 | FENG Chenchen, ZHOU Qi, ZHENG Bin, et al. Ultrathin NiCo2O4 nanosheets with dual-metal active sites for enhanced solar water splitting of a BiVO4 photoanode[J]. Journal of Materials Chemistry A, 2019, 7(39): 22274-22278. |
49 | FANG Guozhen, LIU Zhifeng, HAN Changcun, et al. CoNiO2 as a novel water oxidation cocatalyst to enhance PEC water splitting performance of BiVO4 [J]. Chemical Communications, 2020, 56(64): 9158-9161. |
50 | LU Yumeng, SU Jinzhan, SHI Jinwen, et al. Surface recombination passivation of the BiVO4 photoanode by the synergistic effect of the cobalt/nickel sulfide cocatalyst[J]. ACS Applied Energy Materials, 2020, 3(9): 9089-9097. |
51 | KUANG Yongbo, JIA Qingxin, NISHIYAMA Hiroshi, et al. A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting[J]. Advanced Energy Materials, 2016, 6(2): 1501645. |
52 | ZHANG Beibei, HUANG Xiaojuan, ZHANG Yan, et al. Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution[J]. Angewandte Chemie International Edition, 2020, 59(43): 18990-18995. |
53 | ZHAO Fei, LI Na, WU Yun, et al. BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation[J]. International Journal of Hydrogen Energy, 2020, 45: 31902-31912. |
54 | FANG Guozhen, LIU Zhifeng, HAN Changcun, et al. Promising CoFe-NiOOH ternary polymetallic cocatalyst for BiVO4-based photoanodes in photoelectrochemical water splitting[J]. ACS Applied Energy Materials, 2021, 4(4): 3842-3850. |
55 | ZHANG Bo, ZHENG Xueli, VOZNYY Oleksandr, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. |
56 | LIANG Xiaorong, XIE Jiale, XIONG Jinyun, et al. FeCoW multimetal oxide-coated W: BiVO4 photoanode for efficient oxygen evolution[J]. Sustainable Energy & Fuels, 2018, 2(9): 2053-2059. |
57 | GE Ge, LIU Min, LIU Chao, et al. Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2019, 7(15): 9222-9229. |
58 | DU Chun, WANG Jun, LIU Xiao, et al. Ultrathin CoO x -modified hematite with low onset potential for solar water oxidation[J]. Physical Chemistry Chemical Physics, 2017, 19(21): 14178-14184. |
59 | CHOI Min-Ju, KIM Taemin L, CHOI Kyoung Soon, et al. Controlled band offsets in ultrathin hematite for enhancing the photoelectrochemical water splitting performance of heterostructured photoanodes[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7788-7795. |
60 | LIU Guang, ZHAO Yong, YAO Rui, et al. Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers[J]. Chemical Engineering Journal, 2019, 355: 49-57. |
61 | LIU Qiong, CAO Fengren, WU Fangli, et al. Ultrathin amorphous Ni(OH)2 nanosheets on ultrathin α-Fe2O3 films for improved photoelectrochemical water oxidation[J]. Advanced Materials Interfaces, 2016, 3(21): 1600256. |
62 | YANG Gaoliang, LI Yunxiang, PANG Hong, et al. Ultrathin cobalt-manganese nanosheets: An efficient platform for enhanced photoelectrochemical water oxidation with electron-donating effect[J]. Advanced Functional Materials, 2019, 29(46): 1904622. |
63 | YU Xuelian, LIU Jianqiao, YIN Wenchao, et al. Ultrathin NiMn-layered double hydroxide nanosheets coupled with α-Fe2O3 nanorod arrays for photoelectrochemical water splitting[J]. Applied Surface Science, 2019, 492: 264-271. |
64 | YI Yunan, WU Qianbao, WANG Wei, et al. In situ depositing an ultrathin CoO x H y layer on hematite in alkaline media for photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2020, 263: 118334. |
65 | LUO Heng, LIU Changhai, XU Yu, et al. An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30160-30170. |
66 | BAO Jian, ZHANG Xiaodong, FAN Bo, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angewandte Chemie International Edition, 2015, 54(25): 7399-7404. |
67 | ZHANG Beibei, HUANG Xiaojuan, HU Hongyan, et al. Defect-rich and ultrathin CoOOH nanolayers as highly efficient oxygen evolution catalysts for photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(9): 4415-4419. |
68 | SHE Houde, YUE Pengfei, HUANG Jingwei, et al. One-step hydrothermal deposition of F:FeOOH onto BiVO4 photoanode for enhanced water oxidation[J]. Chemical Engineering Journal, 2020, 392: 123703. |
69 | LI Yan, MEI Qiong, LIU Zejun, et al. Fluorine-doped iron oxyhydroxide cocatalyst: Promotion on the WO3 photoanode conducted photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2022, 304: 120995. |
70 | ALAM Suhaib, SAHU Tushar Kanta, QURESHI Mohammad. One-dimensional Co(OH)F as a noble metal-free redox mediator and hole extractor for boosted photoelectrochemical water oxidation in worm-like bismuth vanadate[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(14): 5155-5165. |
71 | GU Xinning, ZHANG Jialing, HOU Liqiong, et al. Dual modification with Ag and FeOOH significantly increased the photoelectrochemical water splitting activity of BiVO4 photoanodes[J]. Surfaces and Interfaces, 2021, 25: 101224. |
72 | YE Kaihang, WANG Zilong, GU Jiuwang, et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes[J]. Energy & Environmental Science, 2017, 10(3): 772-779. |
73 | NING Fanyu, SHAO Mingfei, XU Simin, et al. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting[J]. Energy & Environmental Science, 2016, 9(8): 2633-2643. |
74 | SUN Lixia, SUN Jianhua, YANG Xiaojun, et al. An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting[J]. Dalton Transactions, 2019, 48(42): 16091-16098. |
75 | ZENG Guihua, HOU Liqiong, ZHANG Jialing, et al. FeOOH/rGO/BiVO4 photoanode for highly enhanced photoelectrochemical water splitting performance[J]. ChemCatChem, 2020, 12(14): 3769-3775. |
76 | FENG Chenchen, FU Han, JIA Henan, et al. Ultrathin Ti3C2 nanosheets served as a highly efficient hole transport layer on a Fe2O3 photoanode for photoelectrochemical water oxidation[J]. New Journal of Chemistry, 2021, 45(44): 20537-20541. |
77 | FU Shurong, HU Hongyan, FENG Chenchen, et al. Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting[J]. Journal of Materials Chemistry A, 2019, 7(6): 2513-2517. |
78 | Chong Siang YAW, TANG Junwang, Ai Kah SOH, et al. Synergistic effects of dual-electrocatalyst FeOOH/NiOOH thin films as effective surface photogenerated hole extractors on a novel hierarchical heterojunction photoanode structure for solar-driven photoelectrochemical water splitting[J]. Chemical Engineering Journal, 2020, 380: 122501. |
79 | WANG Tong, LONG Xuefeng, WEI Shenqi, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH cocatalysts[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49705-49712. |
80 | ISMAIL Ahmed S M, Ivan GARCIA-TORREGROSA, VOLLENBROEK Jeroen C, et al. Detection of spontaneous FeOOH formation at the hematite/Ni(Fe)OOH interface during photoelectrochemical water splitting by operando X-ray absorption spectroscopy[J]. ACS Catalysis, 2021, 11(19): 12324-12335. |
81 | DUBALE Amare Aregahegn, SU Wei-Nien, TAMIRAT Andebet Gedamu, et al. The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting[J]. Journal of Materials Chemistry A, 2014, 2(43): 18383-18397. |
82 | XU Weiwei, TIAN Wei, MENG Linxing, et al. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting[J]. Advanced Energy Materials, 2021, 11(8): 2003500. |
83 | LI Sijie, ZHANG Limin, ZHAO Wenqing, et al. Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials[J]. Energy Storage Materials, 2020, 32: 477-496. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[5] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[6] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[7] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[8] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[9] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[10] | DU Tao, MA Jinwei, CHEN Qianqian, FANG Hao, CHEN Bingzhang, CHEN Houren. Comparison test and numerical simulation analysis of PV/T module composite cooling mode [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 722-730. |
[11] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[12] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Structural design of metal-organic framework materials and its adsorption performance on synthetic dyes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5322-5338. |
[13] | ZHANG Huixia, ZHOU Lishan, ZHANG Chenglei, QIAN Guanglei, XIE Chenxin, ZHU Lingzhi. Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5548-5557. |
[14] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[15] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |