Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2180-2189.DOI: 10.16085/j.issn.1000-6613.2022-1180
• Resources and environmental engineering • Previous Articles Next Articles
FAN Sihan(), YU Guoxi, LAI Chaochao, HE Huan(), HUANG Bin, PAN Xuejun
Received:
2022-06-24
Revised:
2022-09-19
Online:
2023-05-08
Published:
2023-04-25
Contact:
HE Huan
范思涵(), 于国熙, 来超超, 何欢(), 黄斌, 潘学军
通讯作者:
何欢
作者简介:
范思涵(1995—),女,硕士研究生,研究方向为溶解性有机质介导内分泌干扰物的迁移转化。E-mail:20202207100@stu.kust.edu.cn。
基金资助:
CLC Number:
FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189.
范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1180
样品 | SUVA254 | ΔlgK | E2/E3 | S275-295 | S350-400 | SR | FI | HIX |
---|---|---|---|---|---|---|---|---|
An-0 | 1.73 | 0.324 | 2.27 | 0.00575 | 0.00142 | 4.05 | 1.84 | 2.30 |
An-P48 | 1.10 | 0.301 | 3.69 | 0.00520 | 0.00070 | 7.43 | 1.99 | 1.23 |
An-E48 | 3.59 | 0.436 | 4.45 | 0.01400 | 0.00258 | 5.43 | 1.65 | 3.15 |
S-0 | 1.03 | 0.366 | 4.32 | 0.00535 | 0.00046 | 11.63 | 1.81 | 1.33 |
S-P48 | 0.84 | 0.263 | 5.23 | 0.00420 | 0.00042 | 10.00 | 2.08 | 1.20 |
S-E48 | 3.70 | 0.704 | 5.99 | 0.0180 | 0.00244 | 7.36 | 1.51 | 2.99 |
样品 | SUVA254 | ΔlgK | E2/E3 | S275-295 | S350-400 | SR | FI | HIX |
---|---|---|---|---|---|---|---|---|
An-0 | 1.73 | 0.324 | 2.27 | 0.00575 | 0.00142 | 4.05 | 1.84 | 2.30 |
An-P48 | 1.10 | 0.301 | 3.69 | 0.00520 | 0.00070 | 7.43 | 1.99 | 1.23 |
An-E48 | 3.59 | 0.436 | 4.45 | 0.01400 | 0.00258 | 5.43 | 1.65 | 3.15 |
S-0 | 1.03 | 0.366 | 4.32 | 0.00535 | 0.00046 | 11.63 | 1.81 | 1.33 |
S-P48 | 0.84 | 0.263 | 5.23 | 0.00420 | 0.00042 | 10.00 | 2.08 | 1.20 |
S-E48 | 3.70 | 0.704 | 5.99 | 0.0180 | 0.00244 | 7.36 | 1.51 | 2.99 |
样品 | 质量分数/% | 摩尔比 | ||||||
---|---|---|---|---|---|---|---|---|
N | C | H | O | S | H/C | O/C | (N+O)/C | |
An-0 | 0.129 | 10.43 | 1.89 | 21.39 | 0.094 | 2.17 | 1.54 | 1.55 |
An-P48 | 0.135 | 9.70 | 2.48 | 24.05 | 0.326 | 3.07 | 1.86 | 1.87 |
An-E48 | 0.093 | 9.66 | 1.60 | 22.22 | 0.402 | 1.99 | 1.73 | 1.73 |
S-0 | 0.208 | 9.83 | 1.63 | 22.59 | 0.570 | 1.99 | 1.72 | 1.74 |
S-P48 | 0.087 | 7.84 | 2.30 | 21.45 | 0.562 | 3.52 | 2.05 | 2.06 |
S-E48 | 0.034 | 8.84 | 0.89 | 22.77 | 0.554 | 1.20 | 1.93 | 1.94 |
样品 | 质量分数/% | 摩尔比 | ||||||
---|---|---|---|---|---|---|---|---|
N | C | H | O | S | H/C | O/C | (N+O)/C | |
An-0 | 0.129 | 10.43 | 1.89 | 21.39 | 0.094 | 2.17 | 1.54 | 1.55 |
An-P48 | 0.135 | 9.70 | 2.48 | 24.05 | 0.326 | 3.07 | 1.86 | 1.87 |
An-E48 | 0.093 | 9.66 | 1.60 | 22.22 | 0.402 | 1.99 | 1.73 | 1.73 |
S-0 | 0.208 | 9.83 | 1.63 | 22.59 | 0.570 | 1.99 | 1.72 | 1.74 |
S-P48 | 0.087 | 7.84 | 2.30 | 21.45 | 0.562 | 3.52 | 2.05 | 2.06 |
S-E48 | 0.034 | 8.84 | 0.89 | 22.77 | 0.554 | 1.20 | 1.93 | 1.94 |
样品 | fTMP/10-14L·mol-1 | AQY | [1O2]SS/10-14mol·L-1 | QY1O2/10-4 | [·OH]SS/10-18mol·L-1 |
---|---|---|---|---|---|
An-0 | 4.99±1.06 | 15.61±3.30 | 2.46±0.18 | 11.30±0.81 | 12.33±0.22 |
An-P48 | 22.99±0.91 | 71.97±2.86 | 10.75±0.50 | 49.30±2.29 | 99.69±2.78 |
An-E48 | 24.82±0.69 | 77.69±2.16 | 13.23±0.55 | 60.68±2.51 | 89.02±2.44 |
S-0 | 14.91±0.80 | 46.65±2.50 | 7.07±0.13 | 32.42±0.58 | 46.13±0.40 |
S-P48 | 20.30±0.32 | 63.55±1.00 | 14.82±0.39 | 68.01±1.79 | 14.85±0.22 |
S-E48 | 47.89±0.47 | 149.90±1.48 | 17.62±0.55 | 80.83±2.53 | 283.43±1.92 |
样品 | fTMP/10-14L·mol-1 | AQY | [1O2]SS/10-14mol·L-1 | QY1O2/10-4 | [·OH]SS/10-18mol·L-1 |
---|---|---|---|---|---|
An-0 | 4.99±1.06 | 15.61±3.30 | 2.46±0.18 | 11.30±0.81 | 12.33±0.22 |
An-P48 | 22.99±0.91 | 71.97±2.86 | 10.75±0.50 | 49.30±2.29 | 99.69±2.78 |
An-E48 | 24.82±0.69 | 77.69±2.16 | 13.23±0.55 | 60.68±2.51 | 89.02±2.44 |
S-0 | 14.91±0.80 | 46.65±2.50 | 7.07±0.13 | 32.42±0.58 | 46.13±0.40 |
S-P48 | 20.30±0.32 | 63.55±1.00 | 14.82±0.39 | 68.01±1.79 | 14.85±0.22 |
S-E48 | 47.89±0.47 | 149.90±1.48 | 17.62±0.55 | 80.83±2.53 | 283.43±1.92 |
1 | NI B J, RITTMANN B E, YU H Q. Soluble microbial products and their implications in mixed culture biotechnology[J]. Trends in Biotechnology, 2011, 29(9): 454-463. |
2 | MENNITI A, KANG S, ELIMELECH M, et al. Influence of shear on the production of extracellular polymeric substances in membrane bioreactors[J]. Water Research, 2009, 43(17): 4305-4315. |
3 | ZHUO X C, HUANG H Y, LAN F, et al. Molecular transformation of dissolved organic matter in high-temperature hydrogen peroxide oxidation of a refinery wastewater[J]. Environmental Chemistry Letters, 2019, 17(2): 1117-1123. |
4 | ALLARD S, GUTIERREZ L, FONTAINE C, et al. Organic matter interactions with natural manganese oxide and synthetic birnessite[J]. Science of the Total Environment, 2017, 583: 487-495. |
5 | HE H, HAN F X, SUN S J, et al. Photosensitive cellular polymeric substances accelerate 17α-ethinylestradiol photodegradation[J]. Chemical Engineering Journal, 2020, 381: 122737. |
6 | HUANG B, LAI C C, DAI H, et al. Microbially reduced humic acid promotes the anaerobic photodegradation of 17α-ethinylestradiol[J]. Ecotoxicology and Environmental Safety, 2019, 171: 313-320. |
7 | REN D, BI T T, GAO S M, et al. Photodegradation of 17 alpha-ethynylestradiol in nitrate aqueous solutions[J]. Environmental Engineering Research, 2016, 21(2): 188-195. |
8 | REN D, HUANG B, XIONG D, et al. Photodegradation of 17α-ethynylestradiol in dissolved humic substances solution: kinetics, mechanism and estrogenicity variation[J]. Journal of Environmental Sciences, 2017, 54: 196-205. |
9 | HE W, HUR J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter [J]. Water Research, 2015, 83: 217-226. |
10 | VIONE D, FABBRI D, MINELLA M, et al. Effects of the antioxidant moieties of dissolved organic matter on triplet-sensitized phototransformation processes: Implications for the photochemical modeling of sulfadiazine[J]. Water Research, 2018, 128: 38-48. |
11 | APPIANI E, OSSOLA R, LATCH D E, et al. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content[J]. Environmental Science-Processes & Impacts, 2017, 19(4): 507-516. |
12 | LIN V S, GRANDBOIS M, MCNEILL K. Fluorescent molecular probes for detection of one-electron oxidants photochemically generated by dissolved organic matter[J]. Environmental Science & Technology, 2017, 51(16): 9033-9041. |
13 | CORY R M, CRUMP B C, DOBKOWSKI J A, et al. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3429-3434. |
14 | MIGNONE R A, MARTIN M V, MORÁN VIEYRA F E, et al. Modulation of optical properties of dissolved humic substances by their molecular complexity[J]. Photochemistry and Photobiology, 2012, 88(4): 792-800. |
15 | DALZELL B J, MINOR E C, MOPPER K M. Photodegradation of estuarine dissolved organic matter: A multi-method assessment of DOM transformation[J]. Organic Geochemistry, 2009, 40(2): 243-257. |
16 | LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 2018, 348: 100-108. |
17 | RESZKA K J, MCCORMICK M L, BRITIGAN B E. Oxidation of anthracycline anticancer agents by the peroxidase mimic microperoxidase 11 and hydrogen peroxide[J]. Free Radical Biology and Medicine, 2003, 35(1): 78-93. |
18 | WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. |
19 | WU H, CHEN Z H, SHENG F, et al. Characterization for the transformation of dissolved organic matters during ultraviolet disinfection by differential absorbance spectroscopy[J]. Chemosphere, 2020, 243: 125374. |
20 | WAN D, KONG Y Q, SELVINSIMPSON S, et al. Effect of UV254 disinfection on the photoformation of reactive species from effluent organic matter of wastewater treatment plant[J]. Water Research, 2020, 185: 116301. |
21 | PRETSCH E, BÜHLMANN P, BADERTSCHER M. 有机化合物结构鉴定: 光谱数据手册[M]. 4版. 北京: 科学出版社, 2012.PRETSCHE, PRETSCHE, BÜHLMANNP, BADERTSCHERM. Structure determination of organic cobmpounds: Tables of spectral data[M]. 4th ed. Beijing: Science Press, 2012. |
22 | ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-2017. |
23 | HELMS J R, MAO J D, STUBBINS A, et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching[J]. Aquatic Sciences, 2014, 76(3): 353-373. |
24 | REN D, HUANG B, YANG B Q, et al. Photobleaching alters the photochemical and biological reactivity of humic acid towards 17 alpha-ethynylestradiol[J]. Environmental Pollution, 2017, 220: 1386-1393. |
25 | COTTRELL B A, TIMKO S A, DEVERA L, et al. Photochemistry of excited-state species in natural waters: A role for particulate organic matter[J]. Water Research, 2013, 47(14): 5189-5199. |
26 | TANDY S, HEALEY J R, NASON M A, et al. FT-IR as an alternative method for measuring chemical properties during composting[J]. Bioresource Technology, 2010, 101(14): 5431-5436. |
27 | PETERSEN H I, ROSENBERG P, NYTOFT H P. Oxygen groups in coals and alginite-rich kerogen revisited[J]. International Journal of Coal Geology, 2008, 74(2): 93-113. |
28 | 顾丽鹏, 何欢, 胥志祥, 等. 可溶性有机质生物改性介导17β-雌二醇生物降解作用[J]. 中国环境科学, 2016, 36(2): 468-475. |
GU Lipeng, HE Huan, XU Zhixiang, et al. Dissolved organic matters bio-modification mediated 17β-estradiol biodegradation[J]. China Environmental Science, 2016, 36(2): 468-475. | |
29 | TAN X L, FANG M, LI J X, et al. Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid[J]. Journal of Hazardous Materials, 2009, 168(1): 458-465. |
30 | ZHOU Z B, HE X, ZHOU M H, et al. Chemically induced alterations in the characteristics of fouling-causing bio-macromolecules—Implications for the chemical cleaning of fouled membranes[J]. Water Research, 2017, 108: 115-123. |
31 | DU Y, WU Q Y, LYU X T, et al. Electron donating capacity reduction of dissolved organic matter by solar irradiation reduces the cytotoxicity formation potential during wastewater chlorination[J]. Water Research, 2018, 145: 94-102. |
32 | DAI H, HE H, LAI C C, et al. Modified humic acids mediate efficient mineralization in a photo-bio-electro-Fenton process[J]. Water Research, 2021, 190: 116740. |
33 | DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide[J]. Environmental Science & Technology, 2010, 44(15): 5824-5829. |
34 | DE LUCAS N C, RUIS C P, TEIXEIRA R I, et al. Photosensitizing properties of triplet furano and pyrano-1,2-naphthoquinones[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2014, 276: 16-30. |
35 | 杜超, 程德义, 代静玉, 等. 不同来源溶解性有机质在光辐射下产生活性氧基团能力的差异[J]. 环境科学学报, 2019, 39(7): 2279-2287. |
DU Chao, CHENG Deyi, DAI Jingyu, et al. Differences in the ability of dissolved organic matter from different sources to produce reactive oxygen species under light irradiation[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2279-2287. | |
36 | ZHANG D N, YAN S W, SONG W H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter[J]. Environmental Science & Technology, 2014, 48(21): 12645-12653. |
[1] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[2] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[3] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[4] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[5] | LIU Yixuan, LIN Yuechao, MA Weifang. Research progress on degradation of halogenated organic contaminants in water by visible light photocatalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 571-579. |
[6] | SUN Lingbo, HU Mingzhong, LIANG Mingming, WU Yongjuan, LIU Liying. Research progress of bismuth-based semiconductor photocatalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4813-4830. |
[7] | YAN Rui, SUN Zhichao, ZHANG Mengmeng, LIU Yingya, YU Zhiquan, WANG Wei, WANG Yao, WANG Anjie. Photocatalytic properties of Ni x P y and its composites prepared by phosphating method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2468-2475. |
[8] | ZHU Feifei, MA Lei, LONG Huimin. Research progresses on the preparation and application of PdxSy catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 740-749. |
[9] | SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363. |
[10] | ZHANG Xuan, ZHENG Lijun. Process of single phase photocatalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 215-222. |
[11] | LI Fangqin, SUN Chenhao, REN Jianxing, WU Jiang, CHEN Linfeng, LI Kejun. Research progress of novel photocatalytic hydrogen production system with pollutants as electron donors [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4791-4805. |
[12] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
[13] | LI Yan, SONG Shuang, LIAN Xiaoxue. Optical and photocatalytic properties of MoS2/ZnO nanocomposite [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3870-3877. |
[14] | WANG Yajun, ZHANG Wencan, LI Yuming, JIANG Guiyuan, YAO Wenqing. Research progress of carbon dots in photocatalytic hydrogen production [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2952-2961. |
[15] | LIU Shugen, KONG Xin, LYU Xuebin, LIU Qingling, CHEN Guanyi. Research progress on the inhibition of aerobic treatment of organic solid wastes [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6818-6828. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |