Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 215-222.DOI: 10.16085/j.issn.1000-6613.2021-0005
• Industrial catalysis • Previous Articles Next Articles
Received:
2021-01-04
Revised:
2021-01-20
Online:
2021-11-09
Published:
2021-10-25
Contact:
ZHENG Lijun
通讯作者:
郑丽君
作者简介:
张轩(1987—),男,博士,工程师,研究方向为石油化工和新能源。E-mail:CLC Number:
ZHANG Xuan, ZHENG Lijun. Process of single phase photocatalysts for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 215-222.
张轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0005
催化体系 | 照射条件 | 产氢速率/μmol·h-1·g-1 |
---|---|---|
Mo/g-C3N4[ | 300W氙灯 | 79 |
Cu/g-C3N4[ | 300W氙灯,λ>420nm | 3020 |
K/g-C3N4[ | 300W氙灯,λ=420nm | 1337.2 |
S/g-C3N4[ | 300W氙灯,λ>420nm | 1511.2 |
Br/g-C3N4[ | 300W氙灯,λ>420 nm | 48 |
P/g-C3N4[ | 300W氙灯,λ>420nm | 50.6 |
C/g-C3N4[ | 300W氙灯,λ=420nm | 807.4 |
O/g-C3N4[ | 300W氙灯,λ=420nm | 1968 |
催化体系 | 照射条件 | 产氢速率/μmol·h-1·g-1 |
---|---|---|
Mo/g-C3N4[ | 300W氙灯 | 79 |
Cu/g-C3N4[ | 300W氙灯,λ>420nm | 3020 |
K/g-C3N4[ | 300W氙灯,λ=420nm | 1337.2 |
S/g-C3N4[ | 300W氙灯,λ>420nm | 1511.2 |
Br/g-C3N4[ | 300W氙灯,λ>420 nm | 48 |
P/g-C3N4[ | 300W氙灯,λ>420nm | 50.6 |
C/g-C3N4[ | 300W氙灯,λ=420nm | 807.4 |
O/g-C3N4[ | 300W氙灯,λ=420nm | 1968 |
29 | FAJRINA Nur, TAHIR Muhammad. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(2): 540-577. |
30 | LIN Zhongjin, WANG Xiaohong, LIU Jun, et al. On the role of localized surface plasmon resonance in UV-vis light irradiated Au/TiO2 photocatalysis systems: pros and cons[J]. Nanoscale, 2015, 7(9):4114-4123. |
1 | SUN Hewei, CHEN Jingjing, LIU Shan, et al. Photocatalytic H2 evolution of porous silicon derived from magnesiothermic reduction of mesoporous SiO2[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7216-7221. |
2 | FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38. |
31 | ZHU Zhen, Cheng Tse KAO, TANG Bing Hong, et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light[J]. Ceramics International, 2016, 42(6): 6749-6754. |
32 | ISMAEL Mohammed. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe(Ⅲ) doped TiO2 nanoparticles[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103676-103685. |
3 | CHEN Shanshan, TAKATA Tsuyoshi, DOMEN Kazunari. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2(10): 1-17. |
4 | ISMAEL Mohammed, ELHADAD Engy, TAFFA Dereje, et al. Synthesis of phase pure hexagonal YFeO3 perovskite as efficient visible light active photocatalyst[J]. Catalysts, 2017, 7(11): 326-336. |
33 | MÉNDEZ Franklin J, Andrés GONZÁLEZ-MILLÁN, GARCÍA-MACEDO Jorge A, et al. A new insight into Au/TiO2-catalyzed hydrogen production from water-methanol mixture using lamps containing simultaneous ultraviolet and visible radiation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14945-14954. |
34 | NISHIOKA Shunta, HYODO Junji, VEQUIZO Junie Jhon M, et al. Homogeneous electron doping into nonstoichiometric strontium titanate improves its photocatalytic activity for hydrogen and oxygen evolution[J]. ACS Catalysis, 2018, 8(8): 7190-7200. |
35 | SELVARAJ A, PARIMILADEVI R, RAJESH K B. Synthesis of nitrogen doped titanium dioxide (TiO2) and its photocatalytic performance for the degradation of indigo carmine dye[J]. Journal of Environmental Nanotechnology, 2013, 2(1): 35-41. |
36 | WANG Chong, HU Qianqian, HUANG Jiquan, et al. Effective water splitting using N-doped TiO2 films: role of preferred orientation on hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1967-1971. |
5 | ISMAEL Mohammed, WARK Michael. Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation[J]. Catalysts, 2019, 9(4): 342-351. |
6 | TSUJI Issei, KATO Hideki, KUDO Akihiko. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chemistry of Materials, 2006, 18(7): 1969-1975. |
37 | XIANG Quanjun, YU Jiaguo, WANG Wenguang, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity[J]. Chemical Communications, 2011, 47: 6906-6908. |
38 | PARAYIL Sreenivasan Koliyat, KIBOMBO Harrison S, WU Chia-Ming, et al. Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8257-8267. |
7 | ZHANG Fuxiang, MAEDA Kazuhiko, TAKATA Tsuyoshi, et al. Modification of oxysulfides with two nanoparticulate cocatalysts to achieve enhanced hydrogen production from water with visible light[J]. Chemical Communications, 2010, 46: 7313-7315. |
8 | EDALATI Kaveh, UEHIRO Ryoko, TAKECHI Shuhei, et al. Enhanced photocatalytic hydrogen production on GaN-ZnO oxynitride by introduction of strain-induced nitrogen vacancy complexes[J]. Acta Materialia, 2020, 185:149-156. |
9 | HUANG Cunping, YAO Weifeng, T-Raissi ALI, et al. Development of efficient photoreactors for solar hydrogen production[J]. Solar Energy, 2011, 85(1): 19-27. |
10 | XIAO Mu, WANG Zhiliang, Miaoqiang LYU, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Advanced Materials, 2019, 31(38): 1801369-1801374. |
11 | SUN Bojing, ZHOU Wei, LI Haoze, et al. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production[J]. Advanced Materials, 2018, 30(43): 1804282-1804287. |
12 | XIAO Yu, GUO Xiangyang, YANG Nengcong, et al. Heterostructured MOFs photocatalysts for water splitting to produce hydrogen [J]. Journal of Energy Chemistry, 2021, 58: 508-522. |
13 | ISMAEL Mohammed. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2nanoparticles[J]. Solar Energy, 2020, 211: 522-546. |
14 | Ryu ABE. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11(4): 179-209. |
15 | MAEDA Kazuhiko, TERAMURA Kentaro, TAKATA Tsuyoshi, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(43): 20504-20510. |
16 | TAKANABE Kazuhiro. Addressing fundamental experimental aspects of photocatalysisstudies[J]. Journal of Catalysis, 2019, 370: 480-484. |
17 | KANG Yanshang, LU Yi, CHEN Kai, et al. Metal-organic frameworks with catalytic centers: from synthesis to catalytic application[J]. Coordination Chemistry Reviews, 2019, 378: 262-280. |
18 | ACHARYA Rashmi, NAIK Brundabana, PARIDA Kulamani. Cr(Ⅵ) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction[J]. Beilstein Journal of Nanotechnology, 2018, 9: 1448-1470. |
19 | FEIZPOOR Solmaz, Aziz HABIBI-YANGJEH, YUBUTA Kunio. Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367: 94-104. |
20 | MATSUZAKI Hiroki, MATSUI Yoshiko, UCHIDA Rokuroh, et al. Photocarrier dynamics in anatase TiO2 investigated by pump-probe absorption spectroscopy[J]. Journal of Applied Physics, 2014, 115(5): 053514-05319. |
21 | WANG Mengye, PANG Xinchang, ZHENG Dajiang, et al. Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis[J]. Journal of Materials Chemistry A, 2016, 4(19): 7190-7199. |
22 | RAHIMI Nazanin, Randolph PAX, GRAY Evan M. Review of functional titanium oxides.Ⅱ: hydrogen-modified TiO2[J]. Progress in Solid State Chemistry, 2019, 55: 1-19. |
23 | ZHANG Dainan, MA Xiyang, ZHANG Huaiwu, et al. Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+[J]. Materials Today Energy, 2018, 10: 132-140. |
24 | ZHANG Xiangcheng, HU Weiyao, ZHANG Kaifu, et al. Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6894-6901. |
25 | SUN Mingjie, LIU Haobo, SUN Ziqi, et al. Donor-acceptor codoping effects on tuned visible light response of TiO2[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104168-104172. |
26 | KIM Geo Jong, LEE Sang Moon, HONG Sung Chang, et al. Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/TiO2 catalysts at room temperature; role of the Pt valence state on this reaction[J]. RSC Advances, 2018, 8(7): 3626-3636. |
27 | PRAKASH Jai, SUN Shuhui, SWART Hendrik C, et al. Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Applied Materials Today, 2018, 11: 82-135. |
28 | ZHANG Peng, WANG Tuo, GONG Jinlong. Current mechanistic understanding of surface reactions over water-splitting photocatalysts[J]. Chem., 2018, 4(2):223-245. |
39 | AL-MAMUN M R, KADER S, ISLAM M S, et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103248-103256. |
40 | KUMAR Ajay, REDDY Kumbam Lingeshwar, KUMAR Suneel, et al. Rational design and development of lanthanide-doped NaYF4@CdS-Au-RGO as quaternary plasmonic photocatalysts for harnessing visible-near-infrared broadband spectrum[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15565-15581. |
41 | SINGH A, SINHA A S K. Synthesis and characterization of CdS based ternary composite for enhanced visible light-driven photocatalysis[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 123-132. |
42 | CHENG Lei, XIANG Quanjun, LIAO Yulong, et al. CdS-based photocatalysts[J]. Energy & Environmental Science, 2018, 11(6): 1362-1391. |
43 | SHABAEV A, EFROS A L. 1D Exciton spectroscopy of semiconductor nanorods[J]. Nano Letters, 2004, 4(10):1821-1825. |
44 | SHEN Rongchen, REN Doudou, DING Yingna, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: a review[J]. Science China Materials, 2020, 63: 2153-2188. |
45 | XU You, ZHAO Weiwei, XU Rui, et al. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution[J]. Chemical Communications, 2013, 49(84): 9803-9805. |
46 | BIE Chuanbiao, FU Junwei, CHENG Bei, et al. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation[J]. Applied Surface Science, 2018, 462: 606-614. |
47 | XIE Yameng, LIU Xiaohua, ZHANG Rui, et al. Ultrathin cadmium sulfide nanosheets for visible-light photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2020, 8(7): 3586-3589. |
48 | ZHANG Jun, GUO Yun, XIONG Yuhan, et al. An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance[J]. Journal of Catalysis, 2017, 356: 1-13. |
49 | LI Cuixia, HAN Lijun, LIU Rongji, et al. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution[J]. Journal of Materials Chemistry, 2012, 22(45): 23815-23820. |
50 | MAJEED Imran, NADEEM Muhammad Amtiaz, HUSSAIN Ejaz, et al. Effect of deposition method on metal loading and photocatalytic activity of Au/CdS for hydrogen production in water electrolyte mixture[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3006-3018. |
51 | ZHANG Li, FU Xianliang, MEMG Sugang, et al. Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light[J]. Journal of Materials Chemistry A, 2015, 3(47): 23732-23742. |
52 | LIU Shuzi, GUO Zhuang, QIAN Xianhao, et al. Sonochemical deposition of ultrafine metallic Pt nanoparticles on CdS for efficient photocatalytic hydrogen evolution[J]. Sustain Energy Fuels, 2019, 3(47): 1048-1054. |
53 | HUANG Sheng, LIN Yu, YANG Jianhua, et al. Enhanced photocatalytic activity and stability of semiconductor by Ag doping and simultaneous deposition: the case of CdS[J]. RSC Advances, 2013, 3(43): 20782-20792. |
54 | MONIRUDDIN Md, OPPONG Ellis, STEWART David, et al. Designing CdS-based ternary heterostructures consisting of co-metal and CoOxcocatalysts for photocatalytic H2 evolution under visible light[J]. Inorganic Chemistry, 2019, 58(18):12325-12333. |
55 | YANG Hao, JIN Zhiliang, FAN Kai, et al. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity[J]. Superlattices and Microstructures, 2017, 111: 687-695. |
56 | CHEN Jianmin, Siming LYU, SHEN Zirong, et al. Novel ZnCdS quantum dots engineering for enhanced visible-light-driven hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13805-13814. |
57 | AL-HUSSAINI A S, EL-BANA W E, EL-GHAMAZ N A. New semiconducting core-shell nanocomposites[J]. Composite Interfaces, 2020, 27(4): 385-399. |
58 | OSSOSS K M, HASSAN M E R, AL-HUSSAINI A S. Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes[J]. Journal of Polymer Research, 2019, 26: 199-205. |
59 | YU Guiyang, WANG Xiang, CAO Jungang, et al. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution[J]. Chemical Communications, 2016, 52(11): 2394-2397. |
60 | WANG Juan, WANG Guohong, WANG Xiao, et al. 3D/2D direct Z-scheme heterojunctions of hierarchical TiO2 microflowers/g-C3N4 nanosheets with enhanced charge carrier separation for photocatalytic H2 evolution[J]. Carbon, 2019, 149: 618-626. |
61 | FU Yanhui, LIANG Wei, GUO Jinqiu, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. |
62 | CHEN Zhe, YANG Shuibin, TIAN Zhengfang, et al. NiS and grapheme as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4[J]. Applied Surface Science, 2019, 469: 657-665. |
63 | JIA Jingjing, WHITE Edward R, CLANCY Adam J. et al. Fast exfoliation and functionalisation of two-dimensional crystalline carbon nitride by framework charging[J]. Angewandte Chemie, 2018,130(39): 12838-12842 |
64 | ZHANG Xiao, WANG Peng, YANG Ping, et al. Photo-chemical property evolution of superior thin g-C3N4nanosheets with their crystallinity and Pt deposition[J]. International Journal of Hydrogen Energy, 2020, 45(41):21523-21531. |
65 | LI Yunfeng, JIN Renxi, XING Yan, et al. Macroscopic foam-like holey ultrathin g-C3N4nanosheets for drastic improvement of visible-light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273-1601284. |
66 | HAN Qing, WANG Bing, GAO Jian, et al. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. |
67 | SUN Jiuyu, LI Xingxing,Yang Jinlong. Significantly enhanced charge separation in rippled monolayer graphitic C3N4[J]. ChemCatChem, 2019, 11(24): 6252-6257. |
68 | PATNAIK Sulagna, MARTHA Satyabadi, MADRAS Giridhar, et al. The effect of sulfate pre-treatment to improve deposition of Au-nanoparticles in gold-modified sulphated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction[J]. Physical Chemistry Chemical Physics, 2016, 18(41): 28502-28514. |
69 | CAO Shaowen, JIANG Jing, ZHU Bicheng, et al. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4photocatalyst[J]. Physical Chemistry Chemical Physics, 2016, 18(28):19457-19463. |
70 | Man OU, WAN Shipeng, ZHONG Qin. Single Pt atoms deposition on g-C3N4nanosheetsfor photocatalytic H2 evolution or NO oxidation under visible light[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27043-27054. |
71 | CHEN Peiwen, LI Kui, YU Yuxiang, et al. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution[J]. Applied Surface Science, 2017, 392:608-615. |
72 | SUN Chuanzhi, ZHANG Hui, LIU Hao, et al. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4photocatalyst via nanoparticle metal Ni as cocatalyst[J]. Applied Catalysis B: Environmental, 2018, 235: 66-74. |
73 | MOON Gunhee, FUJITSUKA Mamoru, KIM Sooyeon, et al. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements[J]. ACS Catalysis, 2017, 7(4): 2886-2895. |
74 | WANG Hao, YANG Chuanfeng, LI Ming, et al. Enhanced photocatalytic hydrogen production of restructured B/F codoped g-C3N4via post-thermal treatment[J]. Materials Letters, 2018, 212: 319-322. |
75 | ZHOU Yajun, ZHANG Lingxia, HUANG Weimin, et al. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light[J]. Carbon, 2016, 99:111-117. |
76 | CHEN Dongdong, LIU Junguang, JIA Zhenzhen, et al. Efficient visible-light-driven hydrogen evolution and Cr(Ⅵ) reduction over porous P and Mo co-doped g-C3N4 with feeble N vacancies photocatalyst[J]. Journal of Hazardous Materials, 2019, 361: 294-304. |
77 | YAN Xiaoxiao, JIA Zhiyuan, CHE Haibing, et al. A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 234: 19-25. |
78 | WANG Yanyun, ZHAO Shuo, ZHANG Yiwei, et al. One-pot synthesis of K-doped g-C3N4nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Applied Surface Science, 2018, 440: 258-265. |
79 | WANG Hao, BIAN Yaru, HU Jintang, et al. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 238: 592-598. |
80 | LAN Zhian, ZHANG Guigang, WANG Xinchen. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting[J]. Applied Catalysis B: Environmental, 2016, 192: 116-125. |
81 | ZHOU Yanjun, ZHANG Lingxia, LIU Jianjun, et al. Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A, 2015, 3(7): 3862-3867. |
82 | XIAO Peng, JIANG Deli, LIU Tong, et al. Facile synthesis of carbon-doped g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light[J]. Materials Letters, 2018, 21: 111-113. |
83 | ZHANG Jingwen, GONG Si, MAHMOOD Nasir, et al. Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 9-16. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |