Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 2068-2080.DOI: 10.16085/j.issn.1000-6613.2022-1019
• Resources and environmental engineering • Previous Articles Next Articles
FU Le1(), YANG Yang2, XU Wenqing2(), GENG Zanbu2,3, ZHU Tingyu2, HAO Runlong1()
Received:
2020-05-31
Revised:
2022-09-23
Online:
2023-05-08
Published:
2023-04-25
Contact:
XU Wenqing, HAO Runlong
符乐1(), 杨阳2, 徐文青2(), 耿錾卜2,3, 朱廷钰2, 郝润龙1()
通讯作者:
徐文青,郝润龙
作者简介:
符乐(1999—),男,硕士研究生,研究方向为CO2吸收捕集。E-mail:lfu@ipe.ac.cn。
基金资助:
CLC Number:
FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080.
符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1019
吸收剂 | 实验条件 | 富相体积分数 /% | 吸收负荷 /mol CO2·(mol 胺)-1 | 富相黏度 /mPa·s | 再生能耗 /GJ·(t CO2)-1 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 气体流速 /mL·min-1 | CO2体积分数 /% | 吸收温度 /℃ | 再生温度 /℃ | |||||
EEDA | DEEA | — | — | 30 | — | — | 0.53 | — | — | [ |
BDA | DEEA | 463 | 12 | 40 | — | 78.0 | 0.51 | — | — | [ |
MAPA | DEEA | 5000 | 1~20 | 40 | — | 68.0 | 0.50 | — | 2.20 | [ |
DMBA | DEEA | — | — | 30 | — | 85.0 | 0.43 | — | — | [ |
DETA | DEEA | 3000 | 15 | 40 | — | 80.0 | 0.83 | — | — | [ |
DETA | PMDETA | 60 | 100 | 50 | 120 | 57.0 | 0.613 | 254.0 | 2.40 | [ |
TETA | DEEA | — | 12 | 30 | 120 | 86.7 | 0.95 | 277.5 | 2.46 | [ |
TETA | DMCA | 200 | 13 | 40 | 120 | 65.0 | 0.88 | — | 2.98 | [ |
AEEA | DEEA | 2000 | 12 | 40 | 120 | 70.0 | 3.15① | 114.3 | 2.58 | [ |
吸收剂 | 实验条件 | 富相体积分数 /% | 吸收负荷 /mol CO2·(mol 胺)-1 | 富相黏度 /mPa·s | 再生能耗 /GJ·(t CO2)-1 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 气体流速 /mL·min-1 | CO2体积分数 /% | 吸收温度 /℃ | 再生温度 /℃ | |||||
EEDA | DEEA | — | — | 30 | — | — | 0.53 | — | — | [ |
BDA | DEEA | 463 | 12 | 40 | — | 78.0 | 0.51 | — | — | [ |
MAPA | DEEA | 5000 | 1~20 | 40 | — | 68.0 | 0.50 | — | 2.20 | [ |
DMBA | DEEA | — | — | 30 | — | 85.0 | 0.43 | — | — | [ |
DETA | DEEA | 3000 | 15 | 40 | — | 80.0 | 0.83 | — | — | [ |
DETA | PMDETA | 60 | 100 | 50 | 120 | 57.0 | 0.613 | 254.0 | 2.40 | [ |
TETA | DEEA | — | 12 | 30 | 120 | 86.7 | 0.95 | 277.5 | 2.46 | [ |
TETA | DMCA | 200 | 13 | 40 | 120 | 65.0 | 0.88 | — | 2.98 | [ |
AEEA | DEEA | 2000 | 12 | 40 | 120 | 70.0 | 3.15① | 114.3 | 2.58 | [ |
吸收剂 | 实验条件 | 富相体积分数/% | 吸收负荷/mol CO2·(mol胺)-1 | 富相黏度/mPa·s | 再生效率/% | 再生能耗/GJ·(t CO2)-1 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 空间位阻胺 | 气体流速/mL·min-1 | CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | ||||||
TETA | DEEA | — | 60 | 100 | 40 | — | 44.0 | 0.95 | 1505.0 | 59.9 | — | [ |
TETA | DEEA | AMP | 60 | 100 | 40 | — | 67.2 | 3.32① | 185.5 | 92.3 | — | [ |
DETA | PMDETA | — | 60 | 100 | 40 | 120 | 38.0 | 0.613 | 541.0 | 25.1 | 2.40 | [ |
DETA | PMDETA | AMP | 60 | 100 | 40 | 120 | 43.0 | 0.634 | 152.0 | 80.9 | 1.83 | [ |
吸收剂 | 实验条件 | 富相体积分数/% | 吸收负荷/mol CO2·(mol胺)-1 | 富相黏度/mPa·s | 再生效率/% | 再生能耗/GJ·(t CO2)-1 | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 空间位阻胺 | 气体流速/mL·min-1 | CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | ||||||
TETA | DEEA | — | 60 | 100 | 40 | — | 44.0 | 0.95 | 1505.0 | 59.9 | — | [ |
TETA | DEEA | AMP | 60 | 100 | 40 | — | 67.2 | 3.32① | 185.5 | 92.3 | — | [ |
DETA | PMDETA | — | 60 | 100 | 40 | 120 | 38.0 | 0.613 | 541.0 | 25.1 | 2.40 | [ |
DETA | PMDETA | AMP | 60 | 100 | 40 | 120 | 43.0 | 0.634 | 152.0 | 80.9 | 1.83 | [ |
吸收剂 | 实验条件 | 富相 体积分数/% | 吸收负荷 /molCO2·(mol胺)-1 | 再生能耗 /GJ·(tCO2)-1 | 参考 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 物理溶剂 | 气体流速 /mL·min-1 | CO2体积 分数/% | 吸收温度 /℃ | 再生温度 /℃ | ||||
MEA | — | 正丙醇 | 500 | 100 | 45 | 110 | 56.4 | 0.48 | 2.40 | [ |
AEP | — | 正丙醇 | 240 | 100 | 40 | 120 | 58.0 | 1.26 | 2.74 | [ |
DETA | — | 正丙醇 | 100 | 100 | 30 | 110 | 41.7 | 1.08 | 2.12 | [ |
AMP/MEA | — | DEGDME | 2000 | 12 | 40 | 120 | — | 0.40 | 2.70 | [ |
MEA | — | 环丁砜 | 110 | 15 | 40 | 120 | 49.1 | 0.485 | 2.67 | [ |
TETA | DEEA | 环丁砜 | 120 | 100 | 30 | 110 | 39.0 | 0.984 | 1.81 | [ |
DETA | PMDETA | 环丁砜 | 120 | 100 | 30 | 110 | 27.1 | 1.22 | 1.86 | [ |
AMP/MEA | PMDETA | DMSO | 80 | 100 | 40 | 120 | 56.8 | 0.88 | 2.30 | [ |
TETA | — | 1-MI | 200 | 100 | 45 | 120 | 41.1 | 1.75 | 2.26 | [ |
吸收剂 | 实验条件 | 富相 体积分数/% | 吸收负荷 /molCO2·(mol胺)-1 | 再生能耗 /GJ·(tCO2)-1 | 参考 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
伯/仲胺 | 叔胺 | 物理溶剂 | 气体流速 /mL·min-1 | CO2体积 分数/% | 吸收温度 /℃ | 再生温度 /℃ | ||||
MEA | — | 正丙醇 | 500 | 100 | 45 | 110 | 56.4 | 0.48 | 2.40 | [ |
AEP | — | 正丙醇 | 240 | 100 | 40 | 120 | 58.0 | 1.26 | 2.74 | [ |
DETA | — | 正丙醇 | 100 | 100 | 30 | 110 | 41.7 | 1.08 | 2.12 | [ |
AMP/MEA | — | DEGDME | 2000 | 12 | 40 | 120 | — | 0.40 | 2.70 | [ |
MEA | — | 环丁砜 | 110 | 15 | 40 | 120 | 49.1 | 0.485 | 2.67 | [ |
TETA | DEEA | 环丁砜 | 120 | 100 | 30 | 110 | 39.0 | 0.984 | 1.81 | [ |
DETA | PMDETA | 环丁砜 | 120 | 100 | 30 | 110 | 27.1 | 1.22 | 1.86 | [ |
AMP/MEA | PMDETA | DMSO | 80 | 100 | 40 | 120 | 56.8 | 0.88 | 2.30 | [ |
TETA | — | 1-MI | 200 | 100 | 45 | 120 | 41.1 | 1.75 | 2.26 | [ |
吸收剂 | 实验条件 | 吸收负荷 /mol CO2·(mol胺)-1 | 再生效率 /% | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|
伯/仲胺 | 添加剂 | 气体流速/mL·min-1 | CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | |||
EMEA | H2O | 265 | 100 | 40 | 110 | 0.799 | 38.8 | [ |
EMEA | 乙醇 | 265 | 100 | 40 | 110 | 0.547 | 100.0 | [ |
TETA/AMP | H2O | 80 | 100 | 40 | 120 | 0.95 | 38.8 | [ |
TETA/AMP | 乙醇 | 80 | 100 | 40 | 120 | 1.00 | 95.4 | [ |
吸收剂 | 实验条件 | 吸收负荷 /mol CO2·(mol胺)-1 | 再生效率 /% | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|
伯/仲胺 | 添加剂 | 气体流速/mL·min-1 | CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | |||
EMEA | H2O | 265 | 100 | 40 | 110 | 0.799 | 38.8 | [ |
EMEA | 乙醇 | 265 | 100 | 40 | 110 | 0.547 | 100.0 | [ |
TETA/AMP | H2O | 80 | 100 | 40 | 120 | 0.95 | 38.8 | [ |
TETA/AMP | 乙醇 | 80 | 100 | 40 | 120 | 1.00 | 95.4 | [ |
有机胺 | 催化剂 | 实验条件 | 总酸位点 /µmol·g-1 | 性能提升 | 参考文献 | ||
---|---|---|---|---|---|---|---|
CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | |||||
3.33mol/L MEA | TiO(OH)2 | 15 | 40 | 30~88 | — | DR提高4500%,DA提高68.8% | [ |
5mol/L MEA | SZMF | 15 | 40 | 98 | — | RE降低28%~40% | [ |
5mol/L MEA | Al2O3 | — | — | 65~96 | 935 | RE降低27% | [ |
Al2O3/HZSM-5 | 1050 | RE降低23%~34% | |||||
5mol/L MEA | ZrO2 | 15 | 40 | 40-88 | 126.3 | DR提高54% | [ |
ZnO | 122.7 | ||||||
5mol/L MEA | AgO-Ag2CO3 | 15 | 40 | 40~82 | — | DR提高1010%,CC提高52% | [ |
5mol/L MEA | SO42-/ZrO2 | — | — | 98 | 2796.1 | RE降低9.8% | [ |
MEA-AMP-PZ | HZSM-5 | 15 | 40 | 90~98 | 9502.1 | DR提高121%,RE降低61.6% | [ |
5mol/L MEA | SO42-/ZrO2-HZSM-5 | 50 | 25 | 30~98 | 1596.0 | DR提高37%,DA提高40% RE降低31% | [ |
5mol/L MEA | Fe-Zr@BS | 15 | 40 | 55~98 | 610 | RE降低33% | [ |
有机胺 | 催化剂 | 实验条件 | 总酸位点 /µmol·g-1 | 性能提升 | 参考文献 | ||
---|---|---|---|---|---|---|---|
CO2体积分数/% | 吸收温度/℃ | 再生温度/℃ | |||||
3.33mol/L MEA | TiO(OH)2 | 15 | 40 | 30~88 | — | DR提高4500%,DA提高68.8% | [ |
5mol/L MEA | SZMF | 15 | 40 | 98 | — | RE降低28%~40% | [ |
5mol/L MEA | Al2O3 | — | — | 65~96 | 935 | RE降低27% | [ |
Al2O3/HZSM-5 | 1050 | RE降低23%~34% | |||||
5mol/L MEA | ZrO2 | 15 | 40 | 40-88 | 126.3 | DR提高54% | [ |
ZnO | 122.7 | ||||||
5mol/L MEA | AgO-Ag2CO3 | 15 | 40 | 40~82 | — | DR提高1010%,CC提高52% | [ |
5mol/L MEA | SO42-/ZrO2 | — | — | 98 | 2796.1 | RE降低9.8% | [ |
MEA-AMP-PZ | HZSM-5 | 15 | 40 | 90~98 | 9502.1 | DR提高121%,RE降低61.6% | [ |
5mol/L MEA | SO42-/ZrO2-HZSM-5 | 50 | 25 | 30~98 | 1596.0 | DR提高37%,DA提高40% RE降低31% | [ |
5mol/L MEA | Fe-Zr@BS | 15 | 40 | 55~98 | 610 | RE降低33% | [ |
1 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS) 年度报告(2021)——中国CCUS 路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021. |
CAI bofeng, LI Qi, ZHANG Xian, et al. China’s carbon dioxide capture use and storage (CCUS) annual report (2021)—China CCUS path[R]. Ecological Environment Conditions of Sarft, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China’s Agenda 21 Management Center, 2021. | |
2 | International Energy Agency. Global Energy Review: CO2 Emissions in 2021[R]. IEA, Paris, 2022. |
3 | 胡其会, 李玉星, 张建, 等. “双碳”战略下中国CCUS技术现状及发展建议[J]. 油气储运, 2022, 41(4): 361-371. |
HU Qihui, LI Yuxing, ZHANG Jian, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil & Gas Storage and Transportation, 2022, 41(4): 361-371. | |
4 | BABAR Muhammad, MUKHTAR Ahmad, MUBASHIR Muhammad, et al. Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas[J]. Process Safety and Environmental Protection, 2021, 147: 878-887. |
5 | LIANG Dan, HU Yunfeng, BAO Qiang, et al. A suitable zeolite Rho for separating CO2/CH4 in pressure swing adsorption (PSA) process[J]. Inorganic Chemistry Communications, 2021, 127: 108547. |
6 | LI Gang, XIAO Penny, WEBLEY Paul. Binary adsorption equilibrium of carbon dioxide and water vapor on activated alumina[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2009, 25(18): 10666-10675. |
7 | MACDOWELL Niall, FLORIN Nick, BUCHARD Antoine, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669. |
8 | MANDAL B P, BISWAS A K, BANDYOPADHYAY S S. Selective absorption of H2S from gas streams containing H2S and CO2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol[J]. Separation and Purification Technology, 2004, 35(3): 191-202. |
9 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
10 | LI Qiangwei, GAO Ge, WANG Rujie, et al. Role of 1-methylimidazole in regulating the CO2 capture performance of triethylenetetramine-based biphasic solvents[J]. International Journal of Greenhouse Gas Control, 2021, 108: 103330. |
11 | SMITH Kathryn, XIAO Gongkui, MUMFORD Kathryn, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture[J]. Energy & Fuels, 2014, 28(1): 299-306. |
12 | LI Yannan, CHENG Jun, HU Leiqing, et al. Regulating crystal structures of EDA-carbamates in solid-liquid phase-changing CO2 capture solutions[J]. Fuel, 2019, 252: 47-54. |
13 | ZHANG Zheng, ZHAO Wenbo, NONG Jiejing, et al. Liquid-solid phase-change behavior of diethylenetriamine in nonaqueous systems for carbon dioxide absorption[J]. Energy Technology, 2017, 5(3): 461-468. |
14 | BARZAGLI Francesco, MANI Fabrizio, PERUZZINI Maurizio. Novel water-free biphasic absorbents for efficient CO2 capture[J]. International Journal of Greenhouse Gas Control, 2017, 60: 100-109. |
15 | WANG Rujie, LIU Shanshan, WANG Lidong, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310. |
16 | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
17 | RAYNAL Ludovic, ALIX Pascal, BOUILLON Pierre-Antoine, et al. The DMX™ process: An original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011, 4: 779-786. |
18 | ZHANG Jiafei, QIAO Yu, WANG Wanzhong, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37: 1254-1261. |
19 | PERINU Cristina, ARSTAD Bjørnar, JENS Klaus-Joachim. NMR spectroscopy applied to amine-CO2-H2O systems relevant for post-combustion CO2 capture: A review[J]. International Journal of Greenhouse Gas Control, 2014, 20: 230-243. |
20 | ZHANG Shihan, SHEN Yao, SHAO Peijing, et al. Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas[J]. Environmental Science & Technology, 2018, 52(6): 3660-3668. |
21 | XU Zhicheng, WANG Shujuan, ZHAO Bo, et al. Study on potential biphasic solvents: Absorption capacity, CO2 loading and reaction rate[J]. Energy Procedia, 2013, 37: 494-498. |
22 | XU Zhicheng, WANG Shujuan, CHEN Changhe. CO2 absorption by biphasic solvents: Mixtures of 1,4-butanediamine and 2-(diethylamino)-ethanol[J]. International Journal of Greenhouse Gas Control, 2013, 16: 107-115. |
23 | PINTO Diego D D, ZAIDY Syed A H, HARTONO Ardi, et al. Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests[J]. International Journal of Greenhouse Gas Control, 2014, 28: 318-327. |
24 | WANG Lidong, AN Shanlong, LI Qiangwei, et al. Phase change behavior and kinetics of CO2 absorption into DMBA/DEEA solution in a wetted-wall column[J]. Chemical Engineering Journal, 2017, 314: 681-687. |
25 | YOU Jong Kyun, LEE Woon Youn, KIM Je Young, et al. Screening of biphasic solvents for energy efficient CO2 capture[J]. Energy Procedia, 2017, 114: 2096-2102. |
26 | LEE Jun, Ki Hong Yeon, Kyun You Jong. Phase separation characteristics in biphasic solvents based on mutually miscible amines for energy efficient CO2 capture[J]. Korean Journal of Chemical Engineering, 2017, 34(6): 1840-1845. |
27 | ZHOU Xiaobin, LIU Fan, Bihong LYU, et al. Evaluation of the novel biphasic solvents for CO2 capture: Performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60: 120-128. |
28 | LI Yaoyao, LIU Changjun, PARNAS Richard, et al. The CO2 absorption and desorption performance of the triethylenetetramine + N, N-diethylethanolamine + H2O system[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2351-2360. |
29 | LIU Fei, FANG Mengxiang, DONG Wenfeng, et al. Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation[J]. Applied Energy, 2019, 233: 468-477. |
30 | ZHOU Xiaobin, JING Guohua, Bihong LYU, et al. Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol[J]. Applied Energy, 2019, 235: 379-390. |
31 | LIU Fei, FANG Mengxiang, YI Ningtong, et al. Biphasic behaviors and regeneration energy of a 2-(diethylamino)-ethanol and 2-((2-aminoethyl)amino) ethanol blend for CO2 capture[J]. Sustainable Energy & Fuels, 2019, 3(12): 3594-3602. |
32 | LIU Fei, FANG Mengxiang, YI Ningtong, et al. Research on alkanolamine-based physical-chemical solutions As biphasic solvents for CO2 capture[J]. Energy & Fuels, 2019, 33(11): 11389-11398. |
33 | LI Le, VOICE Alexander K, LI Han, et al. Amine blends using concentrated piperazine[J]. Energy Procedia, 2013, 37: 353-369. |
34 | LI Han, FRAILIE Peter T, ROCHELLE Gary T, et al. Thermodynamic modeling of piperazine/2-aminomethylpropanol/CO2/water[J]. Chemical Engineering Science, 2014, 117: 331-341. |
35 | YE Qing, WANG Xinlei, LU Yongqi. Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 39: 205-214. |
36 | GUO Chao, CHEN Shaoyun, ZHANG Yongchun. A 13C NMR study of carbon dioxide absorption and desorption in pure and blended 2-(2-aminoethylamine)ethanol (AEEA) and 2-amino-2-methyl-1-propanol (AMP) solutions[J]. International Journal of Greenhouse Gas Control, 2014, 28: 88-95. |
37 | ZHANG Pei, SHI Yao, WEI Jianwen, et al. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption[J]. Journal of Environmental Sciences, 2008, 20(1): 39-44. |
38 | KHAN Anoar Ali, HALDER G N, SAHA A K. Carbon dioxide capture characteristics from flue gas using aqueous 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA) solutions in packed bed absorption and regeneration columns[J]. International Journal of Greenhouse Gas Control, 2015, 32: 15-23. |
39 | Saw Khun WAI, SAIWAN Chintana, IDEM Rapheal, et al. Carbon dioxide (CO2) solubility in diethylenetriamine and 2-amino-2-methyl-1-proponal (DETA-AMP) solvent system for amine-based CO2 capture in flue gas from coal combustion[J]. Energy Procedia, 2017, 114: 1973-1979. |
40 | NWAOHA Chikezie, SAIWAN Chintana, SUPAP Teeradet, et al. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA)[J]. International Journal of Greenhouse Gas Control, 2016, 53: 292-304. |
41 | LIU Fan, JING Guohua, ZHOU Xiaobin, et al. Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1352-1361. |
42 | 周小斌, 荆国华, 周作明, 等. 2-氨基-2-甲基-1-丙醇(AMP)活化相变吸收剂捕集CO2特性[C]//2017中国环境科学学会科学与技术年会论文集(第四卷). 厦门, 2017: 876-883. |
43 | Bihong LYU, ZHOU Xiaobin, ZHOU Zuoming, et al. Kinetics and thermodynamics of CO2 absorption into a novel DETA-AMP-PMDETA biphasic solvent[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13400-13410. |
44 | SHEN Li, LIU Fan, SHEN Yao, et al. Novel biphasic solvent of AEP/1-propanol/H2O for CO2 capture with efficient regeneration performance and low energy consumption[J]. Separation and Purification Technology, 2021, 270: 118700. |
45 | WANG Rujie, YANG Yuying, WANG Mengfan, et al. Energy efficient diethylenetriamine-1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study[J]. Applied Energy, 2021, 290: 116768. |
46 | WANG Lidong, ZHANG Yifeng, WANG Rujie, et al. Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture[J]. Environmental Science & Technology, 2018, 52(24): 14556-14563. |
47 | WANG Lidong, LIU Shanshan, WANG Rujie, et al. Regulating phase separation behavior of a DEEA-TETA biphasic solvent using sulfolane for energy-saving CO2 capture[J]. Environmental Science & Technology, 2019, 53(21): 12873-12881. |
48 | WANG Rujie, JIANG Lei, LI Qiangwei, et al. Energy-saving CO2 capture using sulfolane-regulated biphasic solvent[J]. Energy, 2020, 211: 118667. |
49 | LI Xiaoling, ZHOU Xiaobin, WEI Jianwen, et al. Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent[J]. Separation and Purification Technology, 2021, 265: 118481. |
50 | TAMAJÓN F J, Estrella ÁLVAREZ, CERDEIRA F, et al. Comparative study of CO2 absorption in aqueous mixtures of methyldiethanolamine (MDEA) and methanol, focusing on the temperature and concentration influence over the absorption rate[J]. Defect and Diffusion Forum, 2014, 353: 193-198. |
51 | ZHANG Weidong, JIN Xianhang, TU Weiwei, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
52 | YANG Fushen, JIN Xianhang, FANG Jiawei, et al. Development of CO2 phase change absorbents by means of the cosolvent effect[J]. Green Chemistry, 2018, 20(10): 2328-2336. |
53 | WANG Lidong, YU Songhua, LI Qiangwei, et al. Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics[J]. Applied Energy, 2018, 228: 568-576. |
54 | LIU Sen, LING Hao, Juan LYU, et al. New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: Absorption, desorption, phase separation, and technological process[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20461-20471. |
55 | ASADI Ehsan, HAGHTALAB Ali, SHIRAZIZADEH Habib Allah. Experimental measurement of carbon dioxide solubility in aqueous N-methyldiethanolamine + 2-(2-aminoethylamino) ethanol + sulfolane and diethanolamine + 2-(2-aminoethylamino) ethanol + sulfolane hybrid solvents at various temperatures and high pressure[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 415-426. |
56 | YE Jiexu, JIANG Chenkai, CHEN Han, et al. Novel biphasic solvent with tunable phase separation for CO2 capture: Role of water content in mechanism, kinetics, and energy penalty[J]. Environmental Science & Technology, 2019, 53(8): 4470-4479. |
57 | ZHENG Shudong, TAO Mengna, LIU Qing, et al. Capturing CO2 into the precipitate of a phase-changing solvent after absorption[J]. Environmental Science & Technology, 2014, 48(15): 8905-8910. |
58 | Bihong LYU, GUO Bingsong, ZHOU Zuoming, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735. |
59 | CHEN Siming, CHEN Shaoyun, ZHANG Yongchun, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158. |
60 | BARBAROSSA Vincenzo, BARZAGLI Francesco, MANI Fabrizio, et al. Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration[J]. RSC Advances, 2013, 3(30): 12349-12355. |
61 | BARZAGLI Francesco, MANI Fabrizio, PERUZZINI Maurizio. Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)[J]. International Journal of Greenhouse Gas Control, 2013, 16: 217-223. |
62 | ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Catalytic solvent regeneration for energy-efficient CO2 Capture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18755-18788. |
63 | LAI Qinghua, TOAN Sam, ASSIRI Mohammed A, et al. Catalyst- TiO(OH)2 could drastically reduce the energy consumption of CO2 capture[J]. Nature Communications, 2018, 9(1): 1-7. |
64 | ZHANG Xiaowen, ZHU Zhiqing, SUN Xiaoyu, et al. Reducing energy penalty of CO2 capture using Fe promoted SO4 2–/ZrO2/MCM-41 catalyst[J]. Environmental Science & Technology, 2019, 53(10): 6094-6102. |
65 | ZHANG Xiaowen, LIU Helei, LIANG Zhiwu, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
66 | BHATTI Umair H, Sungchan NAM, PARK Sungyoul, et al. Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12079-12087. |
67 | BHATTI Umair H, SIVANESAN Dharmalingam, Sungchan NAM, et al. Efficient Ag2O-Ag2CO3 catalytic cycle and its role in minimizing the energy requirement of amine solvent regeneration for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10234-10240. |
68 | LIU Helei, ZHANG Xin, GAO Hongxia, et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7656-7664. |
69 | ZHANG Xiaowen, ZHANG Rui, LIU Helei, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
70 | XING Lei, WEI Kexin, LI Qiangwei, et al. One-step synthesized SO4 2-/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture[J]. Environmental Science & Technology, 2020, 54(21): 13944-13952. |
71 | HUANG Yufei, ZHANG Xiaowen, LUO Xiao, et al. Catalytic performance and mechanism of meso-microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2698-2709. |
[1] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[2] | ZHANG Weifeng, ZHOU Wu, WANG Qiuhua. Recent developments of phase-change absorption technology for CO2 capture from flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2090-2101. |
[3] | TANG Siyang, LI Xingyu, LU Houfang, ZHONG Shan, LIANG Bin. Perspective on low-energy chemical absorption for CO2 capture [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1102-1106. |
[4] | YANG Jingrui, WANG Ying, CHEN Hu, LYU Yongkang. Effects of O2 concentration on adjusting NO x oxidation ratio cooperated with CABR system denitration performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6139-6148. |
[5] | Hongtao ZHAO, Shumin WANG. Key parameters and energy consumption analysis of amine decarburization regeneration system with MVR for coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 256-262. |
[6] | Fei SHI, Yifan LI. Advances of mixed matrix membrane for CO2 capture [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
[7] | Chaoying SUN, Yingjie LI, Xianyao YAN, Jianli ZHAO. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743. |
[8] | Shijian LU,Lijuan GAO,Jiafeng WANG,Dongya ZHAO,Xin WANG,Quanmin ZHU. Coupling optimization of energy-saving technology for cascade utilization of flue gas CO2 capture system [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 728-737. |
[9] | Hanke LI, Chengxiong DANG, Guangxing YANG, Yonghai CAO, Hongjuan WANG, Feng PENG, Hao YU. Process intensification techniques towards carbon dioxide capture: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. |
[10] | Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. |
[11] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
[12] | Tongbo FANG,Bingtao ZHAO,Daqi WANG,Yaxin SU. Process simulation and evaluation of CO2 removal from flue gas by binary compound solutions [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1561-1566. |
[13] | LIU Kang, XU Shisen, LI Guangyu, REN Yongqiang. Technological process and system analysis of pre-combustion CO2 capture based on IGCC [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907. |
[14] | HE Hui, FANG Mengxiang, WANG Tao, GE Kun. Analysis and optimization of post-combustion CO2 capture system based on chemical absorption [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2406-2412. |
[15] | HE Junnan, WANG Junyao, DENG Shuai, ZHAO Ruikai, ZHAO Li. Research progress on energy-efficiency analysis of carbon capture:theoretical model, evaluation tool and developing trend [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 406-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |