Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1907-1916.DOI: 10.16085/j.issn.1000-6613.2022-1056
• Materials science and technology • Previous Articles Next Articles
LIU Jing1(), LIN Lin1(), ZHANG Jian2, ZHAO Feng1
Received:
2022-06-06
Revised:
2022-07-18
Online:
2023-05-08
Published:
2023-04-25
Contact:
LIN Lin
通讯作者:
林琳
作者简介:
刘静(1999—),女,硕士研究生,研究方向为生物质材料与工程。E-mail:liujing_232021@163.com。
基金资助:
CLC Number:
LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916.
刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1056
类别 | 原料 | 方法 | 比表面积/m2·g-1 | 主要孔类型 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
动物基炭材料 | 蟹壳 | 自模板法 | 634 | 介孔 | 6mol/L KOH | 0.2 | 220 | [ |
虾壳 | CO2活化法 | 431.6 | 微孔 | 6mol/L KOH | 1 | 144.2 | [ | |
鱼鳞 | 碱活化法 | 594 | 微孔 | 1mol/L NaClO4 | 0.07 | 282 | [ | |
蝉蜕 | 碱活化法 | 1676 | 微孔 | 6mol/L KOH | 1 | 335 | [ | |
壳聚糖 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ | |
壳聚糖盐 | 软模板法 | 927 | 大孔 | 1mol/L Na2SO4 | 0.5 | 302 | [ | |
粪便 | 自模板法 | 1000 | 介孔 | 6mol/L KOH | 1 | 486 | [ | |
骨头 | 自模板法 | 785 | 介孔 | 6mol/L KOH | 0.5 | 230.68 | [ | |
植物基炭材料 | 椰子髓 | 碱活化法 | 2056 | 微孔 | 1mol/L H2SO4 | 0.1 | 232.3 | [ |
洋葱 | 碱活化法 | 1914.9 | 微孔 | 6mol/L KOH | 0.5 | 179.5 | [ | |
亚麻籽渣 | 碱活化法 | 3326 | 微孔 | 1mol/L H2SO4 | 0.5 | 398 | [ | |
微藻 | 发泡活化法 | 856 | 微孔 | 6mol/L KOH | 1 | 234 | [ | |
稻草 | 发泡活化法 | 2786.5 | 微孔 | 6mol/L KOH | 1 | 317 | [ | |
竹笋 | 发泡活化法 | 1376.5 | 微孔 | 6mol/L KOH | 0.5 | 178 | [ | |
松子壳 | CO2活化法 | 956 | 微孔 | 6mol/L KOH | 0.5 | 128 | [ | |
芹菜 | 冷冻处理法 | 507.73 | 微孔 | 1mol/L H2SO4 | 1 | 350 | [ | |
椰壳 | 冷冻处理法 | 482 | 微孔 | — | — | — | [ | |
漆木 | H3PO4活化法 | 1609.09 | 介孔 | 1mol/L H2SO4 | 0.5 | 354 | [ | |
杨柳絮 | H3PO4活化法 | 2011 | 介孔 | 6mol/L KOH | 0.5 | 316.5 | [ | |
果实绒毛 | H3PO4活化法 | 1758.5 | 介孔 | 6mol/L KOH | 1 | 247.5 | [ | |
梧桐树皮 | 硬模板法 | 1587.62 | 介孔 | 6mol/L KOH | 0.5 | 115.6 | [ | |
胡萝卜 | 硬模板法 | 1265 | 介孔 | — | 1 | 268 | [ | |
生物油 | 硬模板法 | 1409.89 | 介孔 | 6mol/L KOH | 0.5 | 344 | [ | |
稻壳 | 熔融盐炭化法 | 977 | 介孔 | 1mol/L H2SO4 | 0.5 | 288 | [ | |
废茶叶 | 熔融盐炭化法 | 1308 | 介孔 | 6mol/L KOH | 0.1 | 140 | [ | |
柳叶 | 熔融盐炭化法 | 1065 | 介孔 | 6mol/L KOH | 0.1 | 216 | [ | |
蔗糖 | 催化活化法 | 217 | 介孔 | — | — | — | [ | |
紫菜 | 催化活化法 | 848.4 | 介孔 | — | — | — | [ | |
玉米淀粉 | 催化活化法 | 1775 | 介孔 | 1mol/L C2H5 | 0.1 | 144.8 | [ | |
杨木 | 纤维素酶解法 | 1418 | 介孔 | 6mol/L KOH | 1 | 384 | [ | |
稻草 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ |
类别 | 原料 | 方法 | 比表面积/m2·g-1 | 主要孔类型 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
动物基炭材料 | 蟹壳 | 自模板法 | 634 | 介孔 | 6mol/L KOH | 0.2 | 220 | [ |
虾壳 | CO2活化法 | 431.6 | 微孔 | 6mol/L KOH | 1 | 144.2 | [ | |
鱼鳞 | 碱活化法 | 594 | 微孔 | 1mol/L NaClO4 | 0.07 | 282 | [ | |
蝉蜕 | 碱活化法 | 1676 | 微孔 | 6mol/L KOH | 1 | 335 | [ | |
壳聚糖 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ | |
壳聚糖盐 | 软模板法 | 927 | 大孔 | 1mol/L Na2SO4 | 0.5 | 302 | [ | |
粪便 | 自模板法 | 1000 | 介孔 | 6mol/L KOH | 1 | 486 | [ | |
骨头 | 自模板法 | 785 | 介孔 | 6mol/L KOH | 0.5 | 230.68 | [ | |
植物基炭材料 | 椰子髓 | 碱活化法 | 2056 | 微孔 | 1mol/L H2SO4 | 0.1 | 232.3 | [ |
洋葱 | 碱活化法 | 1914.9 | 微孔 | 6mol/L KOH | 0.5 | 179.5 | [ | |
亚麻籽渣 | 碱活化法 | 3326 | 微孔 | 1mol/L H2SO4 | 0.5 | 398 | [ | |
微藻 | 发泡活化法 | 856 | 微孔 | 6mol/L KOH | 1 | 234 | [ | |
稻草 | 发泡活化法 | 2786.5 | 微孔 | 6mol/L KOH | 1 | 317 | [ | |
竹笋 | 发泡活化法 | 1376.5 | 微孔 | 6mol/L KOH | 0.5 | 178 | [ | |
松子壳 | CO2活化法 | 956 | 微孔 | 6mol/L KOH | 0.5 | 128 | [ | |
芹菜 | 冷冻处理法 | 507.73 | 微孔 | 1mol/L H2SO4 | 1 | 350 | [ | |
椰壳 | 冷冻处理法 | 482 | 微孔 | — | — | — | [ | |
漆木 | H3PO4活化法 | 1609.09 | 介孔 | 1mol/L H2SO4 | 0.5 | 354 | [ | |
杨柳絮 | H3PO4活化法 | 2011 | 介孔 | 6mol/L KOH | 0.5 | 316.5 | [ | |
果实绒毛 | H3PO4活化法 | 1758.5 | 介孔 | 6mol/L KOH | 1 | 247.5 | [ | |
梧桐树皮 | 硬模板法 | 1587.62 | 介孔 | 6mol/L KOH | 0.5 | 115.6 | [ | |
胡萝卜 | 硬模板法 | 1265 | 介孔 | — | 1 | 268 | [ | |
生物油 | 硬模板法 | 1409.89 | 介孔 | 6mol/L KOH | 0.5 | 344 | [ | |
稻壳 | 熔融盐炭化法 | 977 | 介孔 | 1mol/L H2SO4 | 0.5 | 288 | [ | |
废茶叶 | 熔融盐炭化法 | 1308 | 介孔 | 6mol/L KOH | 0.1 | 140 | [ | |
柳叶 | 熔融盐炭化法 | 1065 | 介孔 | 6mol/L KOH | 0.1 | 216 | [ | |
蔗糖 | 催化活化法 | 217 | 介孔 | — | — | — | [ | |
紫菜 | 催化活化法 | 848.4 | 介孔 | — | — | — | [ | |
玉米淀粉 | 催化活化法 | 1775 | 介孔 | 1mol/L C2H5 | 0.1 | 144.8 | [ | |
杨木 | 纤维素酶解法 | 1418 | 介孔 | 6mol/L KOH | 1 | 384 | [ | |
稻草 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ |
1 | YANG Lvye, QIU Jianhao, WANG Yaquan, et al. Molten salt synthesis of hierarchical porous carbon from wood sawdust for supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113673. |
2 | JIANG Guancong, LIU Li, XIONG Jingjing, et al. Advanced material-oriented biomass precise reconstruction: A review on porous carbon with inherited natural structure and created artificial structure by post-treatment[J]. Macromolecular Bioscience, 2022, 22(6): e2100479. |
3 | ADELEKE Akanni Adekunle, IKUBANNI Peter P, ORHADAHWE Thomas Aghogho, et al. Sustainability of multifaceted usage of biomass: A review[J]. Heliyon, 2021, 7(9): e08025. |
4 | SONG Hongyan, LI Pei, SHEN Wenzhong. Preparation and applications of biomass porous carbon[J]. Science of Advanced Materials, 2015, 7(11): 2257-2271. |
5 | 毛俏婷, 胡俊豪, 姚丁丁, 等. 生物炭催化生物质热化学转化利用的研究进展[J]. 化工进展, 2020, 39(4): 1302-1307. |
MAO Qiaoting, HU Junhao, YAO Dingding, et al. Biochar for thermo-chemical conversion of biomass: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1302-1307. | |
6 | MAŠEK O. Biochar in thermal and thermochemical biorefineries— Production of biochar as a coproduct[M]//Handbook of Biofuels Production. Amsterdam: Elsevier, 2016: 655-671. |
7 | SINGH Arshdeep, NANDA Sonil, GUAYAQUIL SOSA Jesus Fabricio, et al. Pyrolysis of miscanthus and characterization of value-added bio-oil and biochar products[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): S55-S68. |
8 | ZHAO Wei, YUAN Pei, SHE Xilin, et al. Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(27): 14188-14194. |
9 | SU Xiaoli, JIANG Shuai, ZHENG Xiucheng, et al. Hierarchical porous carbon materials from bio waste-mango stone for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 230: 123-127. |
10 | POONAM, SHARMA Kriti, ARORA Anmol, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
11 | WANG Yifan, ZHANG Lin, HOU Haoqing, et al. Recent progress in carbon-based materials for supercapacitor electrodes: A review[J]. Journal of Materials Science, 2021, 56(1): 173-200. |
12 | LIU Wujun, JIANG Hong, YU Hanqing. Emerging applications of biochar-based materials for energy storage and conversion[J]. Energy & Environmental Science, 2019, 12(6): 1751-1779. |
13 | VIVEKCHAND S R C, ROUT Chandra Sekhar, SUBRAHMANYAM K S, et al. Graphene-based electrochemical supercapacitors[J]. Journal of Chemical Sciences, 2008, 120(1): 9-13. |
14 | 郭楠楠, 张苏, 王鲁香, 等. 植物基多孔炭材料在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2): 87-107. |
GUO Nannan, ZHANG Su, WANG Luxiang, et al. Application of plant-based porous carbon for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 87-107. | |
15 | WU Huali, LIN Jiafu, MOU Jirong, et al. A sustainable hierarchical carbon derived from cultivated fibroid fungus for high performance lithium-sulfur batteries[J]. RSC Advances, 2017, 7(75): 47407-47415. |
16 | LIU Mengyue, NIU Jin, ZHANG Zhengping, et al. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68-75. |
17 | ZHANG Wenli, XU Jinhui, HOU Dianxun, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science, 2018, 530: 338-344. |
18 | MENDOZA Ricardo, OLIVA Jorge, Vicente RODRÍGUEZ-GONZÁLEZ. Effect of the micro-, meso- and macropores on the electrochemical performance of supercapacitors: a review[J]. International Journal of Energy Research, 2022, 46: 6989-7020. |
19 | ZHANG Yingxi, YU Shuai, LOU Gaobo, et al. Review of macroporous materials as electrochemical supercapacitor electrodes[J]. Journal of Materials Science, 2017, 52(19): 11201-11228. |
20 | LIU Tianyu, ZHANG Feng, SONG Yu, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. Journal of Materials Chemistry A, 2017, 5(34): 17705-17733. |
21 | LENG Lijian, XIONG Qin, YANG Lihong, et al. An overview on engineering the surface area and porosity of biochar[J]. The Science of the Total Environment, 2021, 763: 144204. |
22 | WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
23 | JIA Haiyang, SUN Jiawei, XIE Xiao, et al. Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: Ultra-high gravimetric capacitance[J]. Carbon, 2019, 143: 309-317. |
24 | Justin RAJ C, RAJESH Murugesan, MANIKANDAN Ramu, et al. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin[J]. Journal of Power Sources, 2018, 386: 66-76. |
25 | SESUK Thanathon, TAMMAWAT Phontip, JIVAGANONT Pranuda, et al. Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material[J]. Journal of Energy Storage, 2019, 25: 100910. |
26 | LI Yubing, ZHANG Deyi, ZHANG Yameng, et al. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 448: 227396. |
27 | LIU Yingying, DAI Gongxin, ZHU Lingjun, et al. Green conversion of microalgae into high-performance sponge-like nitrogen-enriched carbon[J]. ChemElectroChem, 2019, 6(3): 646-652. |
28 | XU Zenghua, ZHANG Ximing, LIANG Yue, et al. Green synthesis of nitrogen-doped porous carbon derived from rice straw for high-performance supercapacitor application[J]. Energy & Fuels, 2020, 34(7): 8966-8976. |
29 | GAO Qi, XIANG Hongzhong, NI Liangmeng, et al. Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127408. |
30 | LI Zhi, ZHANG Li, AMIRKHIZ Babak Shalchi, et al. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors[J]. Advanced Energy Materials, 2012, 2(4): 431-437. |
31 | DING Yan, HUANG Shuqiong, SUN Yangkai, et al. Preparation of nitrogen and sulfur co-doped and interconnected hierarchical porous biochar by pyrolysis of mantis shrimp in CO2 atmosphere for symmetric supercapacitors[J]. ChemElectroChem, 2021, 8(19): 3745-3754. |
32 | QIN Liyuan, HOU Zhiwei, LU Shuang, et al. Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2019, 14(9): 8907-8918. |
33 | SUN Kang, LENG Changyu, JIANG Jianchun, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Materials, 2017, 32(5): 451-459. |
34 | MA Yingying, TIAN Jinyong, LI Liang, et al. Interconnected hierarchical porous carbon synthesized from freeze-dried celery for supercapacitor with high performance[J]. International Journal of Energy Research, 2021, 45(6): 9058-9068. |
35 | DENG Meigen, WANG Junlong, ZHANG Qi. Effect of freezing pretreatment on the performance of activated carbon from coconut shell for supercapacitor application[J]. Materials Letters, 2022, 306: 130934. |
36 | FANG Yanyan, ZHANG Qianyu, CUI Lifeng. Recent progress of mesoporous materials for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2021, 314: 110870. |
37 | YANG Jie, LIU Kexin, LIU Qiaoyun, et al. Biomass waste-derived mesopore-dominant porous carbon for high-efficiency capacitive energy storage[J]. Journal of Alloys and Compounds, 2021, 885: 161218. |
38 | ZHAO Ya, YANG Jie, WANG Xiaoying, et al. Chinar fruit fluff-derived mesopore-dominant hierarchical porous carbon for high-performance supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(3): 3498-3511. |
39 | HU Shengchun, CHENG Jie, WANG Wuping, et al. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications[J]. Renewable Energy, 2021, 177: 82-94. |
40 | ZHANG Wei, CHENG Rongrong, BI Honghui, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials, 2021, 36(1): 69-81. |
41 | YU Fang, YE Zihan, CHEN Wanru, et al. Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors[J]. Applied Surface Science, 2020, 507: 145190. |
42 | DU Juan, ZHANG Yue, Haijun LYU, et al. Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 853: 157091. |
43 | LI Jiangtong, XIAO Rui, LI Ming, et al. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes[J]. Fuel Processing Technology, 2019, 192: 239-249. |
44 | GAO Yuan, ZHANG Yulin, LI Aimin, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in situ template strategy[J]. Materials Letters, 2018, 230: 183-186. |
45 | YAO Yong, FENG Qiaoxia, HUO Baoyu, et al. Facile self-templating synthesis of heteroatom-doped 3D porous carbon materials from waste biomass for supercapacitors[J]. Chemical Communications (Cambridge, England), 2020, 56(78): 11689-11692. |
46 | ZHANG Caiyun, ZHU Xiaohong, CAO Min, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors[J]. ChemSusChem, 2016, 9(9): 932-937. |
47 | PANG Zhongya, LI Guangshi, XIONG Xiaolu, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: A review[J]. Journal of Energy Chemistry, 2021, 61: 622-640. |
48 | REZAEI Asma, KAMALI Ali Reza. Green production of carbon nanomaterials in molten salts, mechanisms and applications[J]. Diamond and Related Materials, 2018, 83: 146-161. |
49 | LIU Xiaofeng, ANTONIETTI Markus. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460-466. |
50 | XUE Beichen, WANG Zichen, ZHU Yanchao, et al. Sustainable and recyclable synthesis of porous carbon sheets from rice husks for energy storage: A strategy of comprehensive utilization[J]. Industrial Crops and Products, 2021, 170: 113724. |
51 | Noel DÍEZ, FUERTES Antonio B, SEVILLA Marta. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Materials, 2021, 38: 50-69. |
52 | GURTEN INAL I Isil, AKTAS Zeki. Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment[J]. Applied Surface Science, 2020, 514: 145895. |
53 | LIU Yang, WANG Yanzhong, ZHANG Guoxiang, et al. Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors[J]. Materials Letters, 2016, 176: 60-63. |
54 | GAI Lili, LI Jianbin, WANG Qi, et al. Evolution of biomass to porous graphite carbon by catalytic graphitization[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106678. |
55 | YANG Jianxiao, ZUO Songlin. Facile synthesis of graphitic mesoporous carbon materials from sucrose[J]. Diamond and Related Materials, 2019, 95: 1-4. |
56 | OUYANG Haibo, MA Yuanyue, GONG Qinqin, et al. Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 823: 153862. |
57 | ZHANG Xiaohui, QIU Zhian, LI Qingyu, et al. Nickel acetate-assisted graphitization of porous activated carbon at low temperature for supercapacitors with high performances[J]. Frontiers in Chemistry, 2022, 10: 828381. |
58 | LUAN Pengcheng, ZHAO Xianhui, COPENHAVER Katie, et al. Turning natural herbaceous fibers into advanced materials for sustainability[J]. Advanced Fiber Materials, 2022: 1-22. |
59 | WANG Feng, CHEONG Jun Young, LEE Jiyoung, et al. Pyrolysis of enzymolysis-treated wood: Hierarchically assembled porous carbon electrode for advanced energy storage devices[J]. Advanced Functional Materials, 2021, 31(31): 2101077. |
60 | 蒋通宝, 张文文, 吴开丽, 等. 自水解辅助纤维素酶解法制备杨木基多孔碳及其电化学性能的研究[J]. 中国造纸, 2022, 41(2): 9-15. |
JIANG Tongbao, ZHANG Wenwen, WU Kaili, et al. Study on the preparation of poplar wood-based porous carbon via dual mild activation method and its electrochemical performance[J]. China Pulp & Paper, 2022, 41(2): 9-15. | |
61 | WU Xiaoliang, WANG Yahui, ZHONG Renqi, et al. Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor[J]. Diamond and Related Materials, 2021, 116: 108447. |
62 | LIU Xiaowei, LIU Xuehua, SUN Baofen, et al. Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties[J]. Carbon, 2018, 130: 680-691. |
63 | LIANG Jiyuan, ZHAO Jinxing, LI Yuxiao, et al. In situ SiO2 etching strategy to prepare rice husk-derived porous carbons for supercapacitor application[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 383-390. |
64 | SUN Li, ZHOU Yanmei, LI Li, et al. Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors[J]. Applied Surface Science, 2019, 467/468: 382-390. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[8] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[9] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[10] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[13] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[14] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |