Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1847-1859.DOI: 10.16085/j.issn.1000-6613.2022-1190
• Industrial catalysis • Previous Articles Next Articles
HE Zhiyong(), GUO Tianfo, WANG Jinli, LYU Feng
Received:
2022-06-27
Revised:
2022-10-21
Online:
2023-05-08
Published:
2023-04-25
Contact:
HE Zhiyong
通讯作者:
何志勇
作者简介:
何志勇(1975—),男,博士,高级工程师,研究方向为高端精细化学品的研制和工艺开发。E-mail:zyh750810@163.com。
CLC Number:
HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859.
何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1190
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ZnGA | 60 | 40 | 2 | 72.4 | 94.9 | 156.4 | 3.5 | [ | — |
2 | ZnGA酸蚀刻 | 60 | 40 | 2 | 98.2 | 93.0 | 135 | 2.1 | [ | — |
3 | ZnGA化学修饰 | 60 | 40 | 2 | 100.1 | 94.9 | 208 | 1.8 | [ | — |
4 | ZnGA+不同转移剂 | 60 | 4 | 3 | 385 | 91.5 | 36 | 3.6 | [ | CTA:乙二醇苯醚 |
5 | Co-Ni-DMC | 92 | 3 | 4.3 | 233 | 30 | 48.3 | 6.8 | [ | CTA:PPG-425 |
6 | DMC-ZnGA | 80 | 20 | 3 | 2543 | 40.5 | 2.27 | 1.21 | [ | CTA:PPG-400 |
7 | DMC-MAA配位 | 105 | 3 | 3 | — | 41.5 | 2.9 | 2.1 | [ | CTA:PPG |
8 | Co-Co-DMC多孔 | 90 | 24 | 2 | 181 | 20.0 | 68.6 | 4.1 | [ | — |
9 | Co-Fe-DMC多孔 | 90 | 24 | 2 | 111 | 33.5 | 50 | 5.9 | [ | — |
10 | Fe-Co-DMC多孔 | 90 | 24 | 2 | 142 | 16.3 | 85.4 | 6.3 | [ | — |
11 | DMC-RC-PBA | 100 | 24 | 5 | — | 74.1 | 4.788 | 2.74 | [ | 单体CHO |
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | ZnGA | 60 | 40 | 2 | 72.4 | 94.9 | 156.4 | 3.5 | [ | — |
2 | ZnGA酸蚀刻 | 60 | 40 | 2 | 98.2 | 93.0 | 135 | 2.1 | [ | — |
3 | ZnGA化学修饰 | 60 | 40 | 2 | 100.1 | 94.9 | 208 | 1.8 | [ | — |
4 | ZnGA+不同转移剂 | 60 | 4 | 3 | 385 | 91.5 | 36 | 3.6 | [ | CTA:乙二醇苯醚 |
5 | Co-Ni-DMC | 92 | 3 | 4.3 | 233 | 30 | 48.3 | 6.8 | [ | CTA:PPG-425 |
6 | DMC-ZnGA | 80 | 20 | 3 | 2543 | 40.5 | 2.27 | 1.21 | [ | CTA:PPG-400 |
7 | DMC-MAA配位 | 105 | 3 | 3 | — | 41.5 | 2.9 | 2.1 | [ | CTA:PPG |
8 | Co-Co-DMC多孔 | 90 | 24 | 2 | 181 | 20.0 | 68.6 | 4.1 | [ | — |
9 | Co-Fe-DMC多孔 | 90 | 24 | 2 | 111 | 33.5 | 50 | 5.9 | [ | — |
10 | Fe-Co-DMC多孔 | 90 | 24 | 2 | 142 | 16.3 | 85.4 | 6.3 | [ | — |
11 | DMC-RC-PBA | 100 | 24 | 5 | — | 74.1 | 4.788 | 2.74 | [ | 单体CHO |
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | salen-Co(Ⅲ)-三核 | 60 | 4 | 3 | 305 | 98 | 24.7 | 1.1 | [ | — |
2 | [(babhq)CrN3(solv)] | 100 | 4 | 2.5 | 743 | — | 16.5 | 1.57 | [ | 单体CHO |
3 | Salen-Co(Ⅲ)-季铵盐 | 30 | 24 | 2 | 63.8 | 36.2 | 56.2 | 1.61 | [ | — |
4 | SalenCoCl/n-Bu4NBr | 50 | 6 | 3 | 11.3 | — | — | — | [ | — |
5 | 氨基双(酚盐)合铬(Ⅲ)配合物 | 60 | 24 | 4 | 450 | — | 11.5 | 1.31 | [ | 单体CHO |
6 | Salcy-CoCl配合物 | 40 | 6 | 3 | 31.3 | 96 | 12.7 | 1.27 | [ | — |
7 | Co3/Ln配合物催化剂 | 130 | 8 | 2 | 1050 | 99 | 66 | 1.04 | [ | 单体CHO |
8 | Co(Ⅲ)/M(Ⅰ)杂双核 | 50 | 5 | 2 | 96 | 99 | 2.3 | 1.08 | [ | — |
9 | Co(Ⅲ)/Na(Ⅰ)杂双核 | 100 | 8 | 0.1 | 54.5 | 96 | 2.5 | 1.16 | [ | 单体CHO |
10 | Al卟啉-不同取代基 | 70 | 3 | 3 | 102 | 99.9 | 45.8 | 1.19 | [ | — |
11 | Al卟啉-低聚物催化剂 | 100 | 1 | 4 | 78.3 | 62 | 42.6 | 1.3 | [ | — |
12 | Al卟啉-刷状低聚物催化剂 | 50 | 20 | — | 168 | 15.6 | 3.5 | 1.11 | [ | CO2含量4.05g |
13 | 有机催化-TEB+季铵盐 | 50 | — | 1 | 2.19 | — | 1.4 | 1.3 | [ | — |
14 | 有机催化-两性离子 | 60 | 4 | 2 | 31 | 93 | 14.6 | 1.13 | [ | — |
15 | 吡嗪胺配位催化剂 | 100 | 3 | 1.5 | 323.8 | — | — | — | [ | — |
16 | NHC配位铪催化剂 | 60 | 18 | 0.1 | 474 | 99 | 21 | 1.3 | [ | 单体CHO |
17 | 离子功能化金属配合物催化剂 | 80 | 12 | 1 | 21.7 | — | — | — | [ | — |
序号 | 催化剂 | 温度/℃ | 时间/h | 压力/MPa | TON/g∙g-1 | FCO2/% | Mn浓度/kg∙mol-1 | PDI | 参考文献 | 备注 |
---|---|---|---|---|---|---|---|---|---|---|
1 | salen-Co(Ⅲ)-三核 | 60 | 4 | 3 | 305 | 98 | 24.7 | 1.1 | [ | — |
2 | [(babhq)CrN3(solv)] | 100 | 4 | 2.5 | 743 | — | 16.5 | 1.57 | [ | 单体CHO |
3 | Salen-Co(Ⅲ)-季铵盐 | 30 | 24 | 2 | 63.8 | 36.2 | 56.2 | 1.61 | [ | — |
4 | SalenCoCl/n-Bu4NBr | 50 | 6 | 3 | 11.3 | — | — | — | [ | — |
5 | 氨基双(酚盐)合铬(Ⅲ)配合物 | 60 | 24 | 4 | 450 | — | 11.5 | 1.31 | [ | 单体CHO |
6 | Salcy-CoCl配合物 | 40 | 6 | 3 | 31.3 | 96 | 12.7 | 1.27 | [ | — |
7 | Co3/Ln配合物催化剂 | 130 | 8 | 2 | 1050 | 99 | 66 | 1.04 | [ | 单体CHO |
8 | Co(Ⅲ)/M(Ⅰ)杂双核 | 50 | 5 | 2 | 96 | 99 | 2.3 | 1.08 | [ | — |
9 | Co(Ⅲ)/Na(Ⅰ)杂双核 | 100 | 8 | 0.1 | 54.5 | 96 | 2.5 | 1.16 | [ | 单体CHO |
10 | Al卟啉-不同取代基 | 70 | 3 | 3 | 102 | 99.9 | 45.8 | 1.19 | [ | — |
11 | Al卟啉-低聚物催化剂 | 100 | 1 | 4 | 78.3 | 62 | 42.6 | 1.3 | [ | — |
12 | Al卟啉-刷状低聚物催化剂 | 50 | 20 | — | 168 | 15.6 | 3.5 | 1.11 | [ | CO2含量4.05g |
13 | 有机催化-TEB+季铵盐 | 50 | — | 1 | 2.19 | — | 1.4 | 1.3 | [ | — |
14 | 有机催化-两性离子 | 60 | 4 | 2 | 31 | 93 | 14.6 | 1.13 | [ | — |
15 | 吡嗪胺配位催化剂 | 100 | 3 | 1.5 | 323.8 | — | — | — | [ | — |
16 | NHC配位铪催化剂 | 60 | 18 | 0.1 | 474 | 99 | 21 | 1.3 | [ | 单体CHO |
17 | 离子功能化金属配合物催化剂 | 80 | 12 | 1 | 21.7 | — | — | — | [ | — |
1 | WANG Y Y, DARENSBOURG D J. Carbon dioxide-based functional polycarbonates: metal catalyzed copolymerization of CO2 and epoxides[J]. Coordination Chemistry Reviews, 2018, 372: 85-100. |
2 | DARENSBOURG D J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 [J]. Chemical Reviews, 2007, 107(6): 2388-2410. |
3 | 秦玉升. CO2/生物基环氧化合物共聚制备绿色聚碳酸酯材料[J]. 功能高分子学报, 2019, 32(5): 558-566. |
QIN Yusheng. Green polycarbonates prepared by CO2 and bio-based epoxides[J]. Journal of Functional Polymers, 2019, 32(5): 558-566. | |
4 | 韩微莉, 王文珍, 蔺伟. 二氧化碳与环氧化物共聚催化剂研究进展[J]. 分子催化, 2017, 31(6): 575-593. |
HAN Weili, WANG Wenzhen, LIN Wei. Research progress of catalysts for copolymerization of carbon dioxide and epoxides[J]. Journal of Molecular Catalysis (China), 2017, 31(6): 575-593. | |
5 | 胡交利, 高超, 米文涛, 等. 聚碳酸亚丙酯应用进展[J]. 塑料工业, 2021, 49(10): 1-4, 80. |
HU Jiaoli, GAO Chao, MI Wentao, et al. Application progress of polypropylene carbonate[J]. China Plastics Industry, 2021, 49(10): 1-4, 80. | |
6 | 李晓云, 李其峰, 赵雨花, 等. 二氧化碳在聚氨酯中的资源化应用[J]. 燃料化学学报, 2022, 50(2): 195-209. |
LI Xiaoyun, LI Qifeng, ZHAO Yuhua, et al. Utilization of carbon dioxide in polyurethane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 195-209. | |
7 | LIU Shunjie, WANG Xianhong. Polymers from carbon dioxide: polycarbonates, polyurethanes[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 61-66. |
8 | AIDA T, ISHIKAWA M, INOUE S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight[J]. Macromolecules, 1986, 19(1): 8-13. |
9 | KLAUS S, LEHENMEIER M W, HERDTWECK E, et al. Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2-epoxide copolymerization[J]. Journal of the American Chemical Society, 2011, 133(33): 13151-13161. |
10 | VARGHESE J K, PARK D S, JEON J Y, et al. Double metal cyanide catalyst prepared using H3Co(CN)6 for high carbonate fraction and molecular weight control in carbon dioxide/propylene oxide copolymerization[J]. Journal of Polymer Science A: Polymer Chemistry, 2013, 51(22): 4811-4818. |
11 | DARENSBOURG D J, HOLTCAMP M W. Catalytic activity of zinc(Ⅱ) phenoxides which possess readily accessible coordination sites. copolymerization and terpolymerization of epoxides and carbon dioxide[J]. Macromolecules, 1995, 28(22): 7577-7579. |
12 | CHENG Ming, LOBKOVSKY E B, COATES G W. Catalytic reactions involving C1 feedstocks: new high-activity Zn(Ⅱ)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides[J]. Journal of the American Chemical Society, 1998, 120(42): 11018-11019. |
13 | CHATTERJEE C, CHISHOLM M H. The influence of the metal (Al, Cr, and Co) and the substituents of the porphyrin in controlling the reactions involved in the copolymerization of propylene oxide and carbon dioxide by porphyrin metal(Ⅲ) complexes. 1. Aluminum chemistry[J]. Inorganic Chemistry, 2011, 50(10): 4481-4492. |
14 | DARENSBOURG D J, YARBROUGH J C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. Journal of the American Chemical Society, 2002, 124(22): 6335-6342. |
15 | KEMBER M R, KNIGHT P D, REUNG P T R, et al. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure[J]. Angewandte Chemie International Edition, 2009, 48(5): 931-933. |
16 | DU Longchao, WANG Chengze, ZHU Weiju, et al. Copolymerization of carbon dioxide and propylene oxide catalyzed by two kinds of bifunctional salen-cobalt(Ⅲ) complexes bearing four quaternary ammonium salts[J]. Journal of the Chinese Chemical Society, 2020, 67(1): 72-79. |
17 | 张鹏, 刘定华. 双金属氰化络合催化剂催化环氧烷烃与二氧化碳共聚研究进展[J]. 化工进展, 2016, 35(7): 2081-2090. |
ZHANG Peng, LIU Dinghua. The progress of copolymerization of alkylene oxide with carbon dioxide catalyzed by double metal cyanide complex catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2081-2090. | |
18 | PADMANABAN S, KIM M, YOON S. Acid-mediated surface etching of a nano-sized metal-organic framework for improved reactivity in the fixation of CO2 into polymers[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 336-344. |
19 | PADMANABAN S, YOON S. Surface modification of a MOF-based catalyst with Lewis metal salts for improved catalytic activity in the fixation of CO2 into polymers[J]. Catalysts, 2019, 9(11): 892-903. |
20 | MARBACH J, HÖFER T, BORNHOLDT N, et al. Catalytic chain transfer copolymerization of propylene oxide and CO2 using zinc glutarate catalyst[J]. ChemistryOpen, 2019, 8(7): 828-839. |
21 | ALFEROV K, WANG Shuanjin, LI Tianhao, et al. Co-Ni cyanide Bi-metal catalysts: copolymerization of carbon dioxide with propylene oxide and chain transfer agents[J]. Catalysts, 2019, 9(8): 632-651. |
22 | AN N, LI Q, YIN N, et al. Facile preparation and synergy study of DMC/ZnGA composite catalyst for the synthesis of oligo (propylene-carbonate) diols[J]. Applied Organometallic Chemistry, 2019, 33(8): 4999-5009. |
23 | TRAN C H, KIM S A, MOON Y, et al. Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide[J]. Catalysis Today, 2021, 375: 335-342. |
24 | PENCHE G, GONZÁLEZ-VELASCO J R, GONZÁLEZ-MARCOS M P. Porous hexacyanometallate(Ⅲ) complexes as catalysts in the ring-opening copolymerization of CO2 and propylene oxide[J]. Catalysts, 2021, 11(12): 1450-1473. |
25 | ZHANG Weibin, FAN Touwen, YANG Zhen, et al. Crystal phase-driven copolymerization of CO2 and cyclohexene oxide in Prussian blue analogue nanosheets[J]. Applied Materials Today, 2022, 26: 101352-101361. |
26 | DARENSBOURG D J, WILSON S J. What’s new with CO2? Recent advances in its copolymerization with oxiranes[J]. Green Chemistry, 2012, 14(10): 2665-2671. |
27 | KOZAK C M, AMBROSE K, ANDERSON T S. Copolymerization of carbon dioxide and epoxides by metal coordination complexes[J]. Coordination Chemistry Reviews, 2018, 376: 565-587. |
28 | 夏力, 王文珍, 李磊磊, 等. 用于二氧化碳和环氧化物共聚的Salen型催化剂的研究进展[J]. 西安石油大学学报(自然科学版), 2019, 4(34): 109-118. |
XIA Li, WANG Wenzhen, LI Leilei, et al. Research progress in catalysts for copolymerization of carbon dioxide and epoxides[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(4): 109-118. | |
29 | DUAN Ranlong, HU Chenyang, SUN Zhiqiang, et al. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: Cocatalyst-free catalysis[J]. Green Chemistry, 2019, 21(17): 4723-4731. |
30 | HARTWEG M, SUNDERMEYER J. Quinoline-8-olato-chromium catalysts with pseudohalogen effects for the CO2/cyclohexene epoxide copolymerization[J]. European Polymer Journal, 2019, 120: 109245-109249. |
39 | CAO Han, ZHANG Ruoyu, ZHOU Zhenzhen, et al. On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst[J]. ACS Catalysis, 2022, 12(1): 481-490. |
40 | PATIL N, BHOOPATHI S, CHIDARA V, et al. Recycling a borate complex for synthesis of polycarbonate polyols: towards an environmentally friendly and cost-effective process[J]. ChemSusChem, 2020, 13(18): 5080-5087. |
41 | WANG Ying, ZHANG Jianyu, YANG Jialiang, et al. Highly selective and productive synthesis of a carbon dioxide-based copolymer upon zwitterionic growth[J]. Macromolecules, 2021, 54(5): 2178-2186. |
42 | WANG Wenzhen, XU Yachao, WANG Li, et al. Transition metal complexes with pyrazine amine ligand: preparation, structure and carbon dioxide copolymerization behavior[J]. Journal of Molecular Structure, 2019, 1193: 280-285. |
43 | LALREMPUIA R, UNDERHAUG J, TÖRNROOS K W, et al. Anionic hafnium species: an active catalytic intermediate for the coupling of epoxides with CO2?[J]. Chemical Communications, 2019, 55(50): 7227-7230. |
44 | TUMELI T R, VAN WYK J L. Synthesis and characterization of ionic functionalized cobalt and chromium complexes derived from salicylaldimine ligands: application as catalysts in the coupling of carbon dioxide with propylene oxide[J]. Inorganica Chimica Acta, 2021, 527: 120563-120568. |
31 | YU Jinfa, MAO Minjie, LI Huiping, et al. Synthesis, characterization and catalytic activity of salen Co(Ⅲ)Cl in alternating copolymerization of CO2 and propylene oxide[J]. Chinese Journal of Structural Chemistry, 2020, 39(1): 86-95. |
32 | AMBROSE K, MURPHY J N, KOZAK C M. Chromium diamino-bis(phenolate) complexes as catalysts for the ring-opening copolymerization of cyclohexene oxide and carbon dioxide[J]. Inorganic Chemistry, 2020, 59(20): 15375-15383. |
33 | HUANG Jie, XU Yunpeng, WANG Meige, et al. Copolymerization of propylene oxide and CO2 catalyzed by dinuclear salcy-CoCl complex[J]. Journal of Macromolecular Science A, 2020, 57(2): 131-138. |
34 | ASABA H, IWASAKI T, HATAZAWA M, et al. Alternating copolymerization of CO2 and cyclohexene oxide catalyzed by cobalt-lanthanide mixed multinuclear complexes[J]. Inorganic Chemistry, 2020, 59(12): 7928-7933. |
35 | DEACY A C, MOREBY E, PHANOPOULOS A, et al. Co(Ⅲ)/alkali-metal(Ⅰ) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide[J]. Journal of the American Chemical Society, 2020, 142(45): 19150-19160. |
36 | LINDEBOOM W, FRASER D A X, DURR C B, et al. Heterodinuclear Zn(Ⅱ), Mg(Ⅱ) or Co(Ⅲ) with Na(Ⅰ) catalysts for carbon dioxide and cyclohexene oxide ring opening copolymerizations [J]. Chemistry: a European Journal, 2021, 27(47): 12224-12231. |
37 | 郭洪辰, 秦玉升, 王献红, 等. 铝卟啉配合物催化二氧化碳与环氧丙烷共聚反应[J]. 应用化学, 2019, 36(10): 1118-1127. |
GUO Hongchen, QIN Yusheng, WANG Xianhong, et al. Copolymerization of carbon dioxide and propylene oxide under aluminum porphyrin catalyst[J]. Chinese Journal of Applied Chemistry, 2019, 36(10): 1118-1127. | |
38 | CAO Han, QIN Yusheng, ZHUO Chunwei, et al. Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers[J]. ACS Catalysis, 2019, 9(9): 8669-8676. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[9] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |