Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 897-906.DOI: 10.16085/j.issn.1000-6613.2022-0670
• Materials science and technology • Previous Articles Next Articles
ZHAO Xipo1,2(), BIAN Wuxun1, RAN Baoqing1, LIU Jinchao1, YIN Shaoding1, SUN Yiming1,2(
)
Received:
2022-04-15
Revised:
2022-06-28
Online:
2023-03-13
Published:
2023-02-25
Contact:
SUN Yiming
赵西坡1,2(), 卞武勋1, 冉宝清1, 刘进超1, 尹少鼎1, 孙义明1,2(
)
通讯作者:
孙义明
作者简介:
赵西坡(1982—),男,博士,副教授,研究方向为太阳能热储能材料、绿色可降解材料。E-mail:xpzhao123@163.com。
CLC Number:
ZHAO Xipo, BIAN Wuxun, RAN Baoqing, LIU Jinchao, YIN Shaoding, SUN Yiming. Preparation and properties of paraffin solid-solid phase change materials[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 897-906.
赵西坡, 卞武勋, 冉宝清, 刘进超, 尹少鼎, 孙义明. 石蜡固-固相变材料的制备及性能[J]. 化工进展, 2023, 42(2): 897-906.
原料 | 规格 | 生产商 |
---|---|---|
丙烯酸(AA) | AR | 国药集团化学试剂有限公司 |
过氧化苯甲酰(BPO) | AR | 阿拉丁(上海)有限公司 |
氢氧化钠 | AR | 国药集团化学试剂有限公司 |
氯化锌 | AR | 麦克林化学试剂有限公司 |
二甲苯 | AR | 国药集团化学试剂有限公司 |
去离子水 | — | 实验室自制 |
原料 | 规格 | 生产商 |
---|---|---|
丙烯酸(AA) | AR | 国药集团化学试剂有限公司 |
过氧化苯甲酰(BPO) | AR | 阿拉丁(上海)有限公司 |
氢氧化钠 | AR | 国药集团化学试剂有限公司 |
氯化锌 | AR | 麦克林化学试剂有限公司 |
二甲苯 | AR | 国药集团化学试剂有限公司 |
去离子水 | — | 实验室自制 |
原料 | 缩写 | 规格 | 生产商 |
---|---|---|---|
石蜡1 | PA1 | 55#,工业纯 | 中佳新材料科技有限公司 |
石蜡2 | PA2 | 47#,工业纯 | 中佳新材料科技有限公司 |
纯石蜡 | PA3 | 42#,工业纯 | 中佳新材料科技有限公司 |
切片石蜡 | PA4 | 58#,试剂纯 | 国药集团化学试剂有限公司 |
微晶蜡 | PA5 | 60#,工业纯 | 东光县金涛蜡制品厂 |
原料 | 缩写 | 规格 | 生产商 |
---|---|---|---|
石蜡1 | PA1 | 55#,工业纯 | 中佳新材料科技有限公司 |
石蜡2 | PA2 | 47#,工业纯 | 中佳新材料科技有限公司 |
纯石蜡 | PA3 | 42#,工业纯 | 中佳新材料科技有限公司 |
切片石蜡 | PA4 | 58#,试剂纯 | 国药集团化学试剂有限公司 |
微晶蜡 | PA5 | 60#,工业纯 | 东光县金涛蜡制品厂 |
样品 | AA/g | PA/g | 自乳化 |
---|---|---|---|
PA1-SSf | 1.8 | 15(PA1) | 失败 |
PA1-SSt | 1.8 | 10+5(PA1) | 成功 |
PA1-SSa | 2.7 | 10(PA1) | 成功 |
PA1-SSb | 3.6 | 10+5(PA1) | 成功 |
PA2-SS | 2.7 | 10(PA2) | 成功 |
PA3-SS | 2.7 | 10(PA3) | 成功 |
PA4-SS | 2.7 | 10(PA4) | 成功 |
PA5-SS | 2.7 | 10(PA5) | 成功 |
样品 | AA/g | PA/g | 自乳化 |
---|---|---|---|
PA1-SSf | 1.8 | 15(PA1) | 失败 |
PA1-SSt | 1.8 | 10+5(PA1) | 成功 |
PA1-SSa | 2.7 | 10(PA1) | 成功 |
PA1-SSb | 3.6 | 10+5(PA1) | 成功 |
PA2-SS | 2.7 | 10(PA2) | 成功 |
PA3-SS | 2.7 | 10(PA3) | 成功 |
PA4-SS | 2.7 | 10(PA4) | 成功 |
PA5-SS | 2.7 | 10(PA5) | 成功 |
样品 | Tm/ ℃ | Ts/ ℃ | ΔHm/J∙g-1 | ΔHs/J∙g-1 | 储能 效率/% | 理论ΔHs/J∙g-1 |
---|---|---|---|---|---|---|
PA1 | 55.46 | 45.73 | 224.94 | -231.79 | 100 | — |
PA2 | 46.64 | 33.09 | 218.9 | -222.63 | 100 | — |
PA3 | 41.57 | 31.01 | 225.46 | -223.76 | 100 | — |
PA4 | 57.73 | 45.73 | 153.02 | -162.96 | 100 | — |
PA5 | 59.51 | 51.31 | 106.87 | -115.29 | 100 | — |
PA1-SSt | 55.47 | 45.52 | 179.54 | -182.28 | 78.64 | 197.83 |
PA1-SSa | 53.69 | 46.22 | 131.75 | -129.95 | 56.06 | 167.21 |
PA1-SSb | 44.43 | 54.72 | 137.68 | -140.71 | 60.71 | 172.55 |
PA2-SS | 39.55 | 30.86 | 121.61 | -122.93 | 55.22 | 160.60 |
PA3-SS | 45.57 | 38.11 | 132.08 | -134.07 | 59.92 | 161.41 |
PA4-SS | 56.1 | 48.2 | 99.19 | -106.87 | 65.58 | 117.55 |
PA5-SS | 59.02 | 51.64 | 55.44 | -57.82 | 50.15 | 83.17 |
样品 | Tm/ ℃ | Ts/ ℃ | ΔHm/J∙g-1 | ΔHs/J∙g-1 | 储能 效率/% | 理论ΔHs/J∙g-1 |
---|---|---|---|---|---|---|
PA1 | 55.46 | 45.73 | 224.94 | -231.79 | 100 | — |
PA2 | 46.64 | 33.09 | 218.9 | -222.63 | 100 | — |
PA3 | 41.57 | 31.01 | 225.46 | -223.76 | 100 | — |
PA4 | 57.73 | 45.73 | 153.02 | -162.96 | 100 | — |
PA5 | 59.51 | 51.31 | 106.87 | -115.29 | 100 | — |
PA1-SSt | 55.47 | 45.52 | 179.54 | -182.28 | 78.64 | 197.83 |
PA1-SSa | 53.69 | 46.22 | 131.75 | -129.95 | 56.06 | 167.21 |
PA1-SSb | 44.43 | 54.72 | 137.68 | -140.71 | 60.71 | 172.55 |
PA2-SS | 39.55 | 30.86 | 121.61 | -122.93 | 55.22 | 160.60 |
PA3-SS | 45.57 | 38.11 | 132.08 | -134.07 | 59.92 | 161.41 |
PA4-SS | 56.1 | 48.2 | 99.19 | -106.87 | 65.58 | 117.55 |
PA5-SS | 59.02 | 51.64 | 55.44 | -57.82 | 50.15 | 83.17 |
循环次数 | Tm/ ℃ | Ts/ ℃ | ΔHm/J·g-1 | ΔHs/J·g-1 |
---|---|---|---|---|
0 | 55.47 | 45.52 | 179.54 | -182.28 |
50 | 54.66 | 45.46 | 173.05 | -175.82 |
100 | 54.77 | 45.46 | 176.59 | -176.72 |
循环次数 | Tm/ ℃ | Ts/ ℃ | ΔHm/J·g-1 | ΔHs/J·g-1 |
---|---|---|---|---|
0 | 55.47 | 45.52 | 179.54 | -182.28 |
50 | 54.66 | 45.46 | 173.05 | -175.82 |
100 | 54.77 | 45.46 | 176.59 | -176.72 |
样品 | ∆Hm/J·g-1 | ∆Hs/J·g-1 | 参考文献 |
---|---|---|---|
硅藻土/石蜡复合材料 | 114.21 | -105.48 | [ |
气相二氧化硅/石蜡复合相变材料 | 113.3 | -112.0 | [ |
硬脂酸/高岭石纳米管复合材料 | 47.5 | -47.9 | [ |
Zn2+交联羧甲基壳聚糖定型相变材料 | 91.4 | -92.3 | [ |
石蜡固-固相变材料 | 179.54 | -182.28 | 本文 |
聚乙二醇/SiO2复合材料 | 164.9 | -160.1 | [ |
凝胶状定型聚乙二醇相变材料 | 158.4 | -165.3 | [ |
样品 | ∆Hm/J·g-1 | ∆Hs/J·g-1 | 参考文献 |
---|---|---|---|
硅藻土/石蜡复合材料 | 114.21 | -105.48 | [ |
气相二氧化硅/石蜡复合相变材料 | 113.3 | -112.0 | [ |
硬脂酸/高岭石纳米管复合材料 | 47.5 | -47.9 | [ |
Zn2+交联羧甲基壳聚糖定型相变材料 | 91.4 | -92.3 | [ |
石蜡固-固相变材料 | 179.54 | -182.28 | 本文 |
聚乙二醇/SiO2复合材料 | 164.9 | -160.1 | [ |
凝胶状定型聚乙二醇相变材料 | 158.4 | -165.3 | [ |
1 | BADENHORST H. A review of the application of carbon materials in solar thermal energy storage[J]. Solar Energy, 2019, 192: 35-68. |
2 | SHI J, LI M. Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance[J]. Solar Energy, 2021, 220: 331-342. |
3 | JAVADI F S, METSELAAR H S C, GANESAN P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review[J]. Solar Energy, 2020, 206: 330-352. |
4 | KHAN M M A, SAIDUR R, AL-SULAIMAN F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 105-137. |
5 | MANOJ KUMAR P, SUDARVIZHI D, PRAKASH K B, et al. Investigating a single slope solar still with a nano-phase change material[J]. Materials Today: Proceedings, 2021, 45: 7922-7925. |
6 | RINAWA M L, ANITHA SELVASOFIA S D, MANOJ KUMAR P, et al. Analyzing an evacuated tube solar water heating system using twin-nano/paraffin as phase change material[J]. Materials Today: Proceedings, 2022, 50: 2505-2509. |
7 | KATEKAR V P, DESHMUKH S S. A review of the use of phase change materials on performance of solar stills[J]. Journal of Energy Storage, 2020, 30: 101398. |
8 | DOUVI E, PAGKALOS C, DOGKAS G, et al. Phase change materials in solar domestic hot water systems: A review[J]. International Journal of Thermofluids, 2021, 10: 100075. |
9 | GU X, PENG L, LIU P, et al. Enhanced thermal properties and lab-scale thermal performance of polyethylene glycol/modified halloysite nanotube form-stable phase change material cement panel[J]. Construction and Building Materials, 2022, 323: 126550. |
10 | ZHANG P, CUI Y, ZHANG K, et al. Enhanced thermal storage capacity of paraffin/diatomite composite using oleophobic modification[J]. Journal of Cleaner Production, 2021, 279: 123211. |
11 | RAHMALINA D, RAHMAN R A, ISMAIL. Increasing the rating performance of paraffin up to 5000 cycles for active latent heat storage by adding high-density polyethylene to form shape-stabilized phase change material[J]. Journal of Energy Storage, 2022, 46: 103762. |
12 | CHRIAA I, TRIGUI A, KARKRI M, et al. Thermal properties of shape-stabilized phase change materials based on low density polyethylene, hexadecane and SEBS for thermal energy storage[J]. Applied Thermal Engineering, 2020, 171: 115072. |
13 | CHEN Y, GAO S, LIU C, et al. Preparation of PE-EPDM based phase change materials with great mechanical property, thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109988. |
14 | 赵建青, 樊晓红, 沈家瑞. 高密度聚乙烯溶液接枝共聚反应[J]. 塑料工业, 1994,22(5): 29-33. |
ZHAO Jianqing, FAN Xiaohong, SHEN Jiarui. Graft copolymerization of high density polyethylene solution[J]. China Plastics Industry, 1994,22(5): 29-33. | |
15 | GANG-SHENG T, LIU T, ZHAO L, et al. Supercritical carbon dioxide-assisted preparation of polypropylene grafted acrylic acid with high grafted content and small gel percent[J]. The Journal of Supercritical Fluids, 2009, 48(3): 261-268. |
16 | 侯黎黎. 聚丙烯蜡接枝与乳化研究[D]. 郑州: 郑州大学, 2010. |
HOU Lili. Research on the graft the and the emulsification of polypropylene wax[D]. Zhengzhou: Zhengzhou University, 2010. | |
17 | 孙义明, 冉宝清, 卞武勋, 等. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
SUN Yiming, RAN Baoqing, BIAN Wuxun, et al. Preparation and process optimization of polypropylene wax solid-solid phase change material[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 336-345. | |
18 | CHEN X, KONG X, WANG S, et al. Facile preparation of metal/metal-organic frameworks decorated phase change composite materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 40: 102711. |
19 | CEVIK E, BOZKURT A. Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: Cobalt-containing poly(acrylic acid) polymer electrolytes[J]. Journal of Energy Chemistry, 2021, 55: 145-153. |
20 | GUO Y, YANG W, JIANG Z, et al. Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property[J]. Solar Energy Materials and Solar Cells, 2019, 196: 16-24. |
21 | PRIYADARSHI R, KUMAR B, RHIM J W. Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions[J]. International Journal of Biological Macromolecules, 2020, 162: 229-235. |
22 | QU Y, CHEN J, LIU L, et al. Study on properties of phase change foam concrete block mixed with paraffin/fumed silica composite phase change material[J]. Renewable Energy, 2020, 150: 1127-1135. |
23 | ZHANG M, CHENG H, WANG C, et al. Kaolinite nanotube-stearic acid composite as a form-stable phase change material for thermal energy storage[J]. Applied Clay Science, 2021, 201: 105930. |
24 | LI B, SHU D, WANG R, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92. |
25 | WANG R, LI Q, DU G, et al. A hydrogel-like form-stable phase change material with high loading efficiency supported by a three dimensional metal-organic network[J]. Chemical Engineering Journal, 2021, 420: 129898. |
[1] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[2] | SUN Yiming, RAN Baoqing, BIAN Wuxun, LIU Jinchao, YIN Shaoding, ZHAO Xipo. Preparation and process optimization of polypropylene wax solid-solid phase change material [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 336-345. |
[3] | LI Qi, CHENG Zefang, BAI Miao, HU Pengfei. Melting characteristics of high porosity copper foam reinforced phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4928-4936. |
[4] | YANG Zhe, LIU Fei, ZHANG Tao, DENG Xing, ZHANG Zhengwen. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. |
[5] | WANG Enhua, JIN Lili, GAO Shanbin, CHI Kebin, DUAN Aijun. Development of catalyst for n-paraffins hydroisomerization [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2967-2980. |
[6] | LU Shaofeng, CUI Shanshan, SHI Wenzhao, LI Susong, XIE Yan, YANG Qiancheng. Preparation and properties of cross-linked waterborne polyurethane solid-solid phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2574-2581. |
[7] | HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. |
[8] | WAN Qian, WANG Mingjie, HE Luxi, FENG Xiaojiang, HE Zhengbin, YI Songlin. Heat storage and release process and numerical simulation of copper foam/paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2046-2053. |
[9] | HAN Wanling, QIAN Yongxing, ZHANG Huining, CHEN Jiwei, MA Jianqing, ZHANG Kefeng. Review on removal methods of short-chain chlorinated paraffins in environment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3444-3454. |
[10] | ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. |
[11] | Yu LIU, Juan TAN, Jing LIU, Huifeng WANG. Production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins over Pt/ZSM-35 catalysts [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5086-5094. |
[12] | Nanjun LAI, Jun LI, Yiming LYU, Zhongrong LIU, Min LI, Dongyu QIAO, Jiawen DENG. Effect analysis of chemical paraffin removal and control technology in Ansai Oilfield [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4164-4174. |
[13] | Xinwang YIN,Jijun ZHANG,Shichao FENG,Yi SU,Yinhua WAN,Shaofeng ZHANG,Yan LIU. Application of ionic liquids in olefin/paraffin separation [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3936-3946. |
[14] | Zailei QIU. Preparation and application of paraffm emulsifiable concentratefor drilling fluids [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2429-2433. |
[15] | Shaowu YIN,Hongkun LI,Li WANG,Lige TONG,Chuanping LIU. Characteristics and analysis of 80# paraffin/expanded graphite composite phase change material [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1494-1500. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 162
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 369
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |