Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6615-6626.DOI: 10.16085/j.issn.1000-6613.2022-0247
• Resources and environmental engineering • Previous Articles Next Articles
ZHAI Chongyuan1(), ZHAO Dandi1, HE Yapeng1,2(), HUANG Hui1,2,3, CHEN Buming1,2,3, GUO Zhongcheng1,2,3
Received:
2022-02-16
Revised:
2022-04-11
Online:
2022-12-29
Published:
2022-12-20
Contact:
HE Yapeng
翟重渊1(), 赵丹荻1, 何亚鹏1,2(), 黄惠1,2,3, 陈步明1,2,3, 郭忠诚1,2,3
通讯作者:
何亚鹏
作者简介:
翟重源(2001—),男,硕士研究生,研究方向为环境电化学。E-mail:2536316492@qq.com。
基金资助:
CLC Number:
ZHAI Chongyuan, ZHAO Dandi, HE Yapeng, HUANG Hui, CHEN Buming, GUO Zhongcheng. Recent development on boron-doped diamond anodes in electrochemical degradation of emerging antibiotic pollutants[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6615-6626.
翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0247
分类 | 主体结构 | 代表性物质 |
---|---|---|
氨基糖苷类 | 氨基糖与氨基环醇连接 | 链霉素、庆大霉素、链霉素 |
β-内酰胺类 | β-内酰胺环 | 青霉素、头孢菌素、硫霉素类 |
糖肽类 | 高度修饰的七肽骨架 | 万古霉素、去甲万古霉素、 替考拉宁 |
四环素类 | 并四苯 | 四环素、金霉素、土霉素 |
大环内酯类 | 14~16碳内酯环 | 红霉素、阿奇霉素、罗红霉素 |
磺胺类 | 磺胺 | 磺胺甲𫫇唑、磺胺嘧啶 |
喹诺酮类 | 4-喹诺酮 | 诺氟沙星、环丙沙星、氧氟沙星 |
硝基咪唑类 | 硝基咪唑环 | 甲硝唑、罗硝唑、奥硝唑 |
分类 | 主体结构 | 代表性物质 |
---|---|---|
氨基糖苷类 | 氨基糖与氨基环醇连接 | 链霉素、庆大霉素、链霉素 |
β-内酰胺类 | β-内酰胺环 | 青霉素、头孢菌素、硫霉素类 |
糖肽类 | 高度修饰的七肽骨架 | 万古霉素、去甲万古霉素、 替考拉宁 |
四环素类 | 并四苯 | 四环素、金霉素、土霉素 |
大环内酯类 | 14~16碳内酯环 | 红霉素、阿奇霉素、罗红霉素 |
磺胺类 | 磺胺 | 磺胺甲𫫇唑、磺胺嘧啶 |
喹诺酮类 | 4-喹诺酮 | 诺氟沙星、环丙沙星、氧氟沙星 |
硝基咪唑类 | 硝基咪唑环 | 甲硝唑、罗硝唑、奥硝唑 |
1 | JEPSON Paul D, LAW Robin J. Persistent pollutants, persistent threats[J]. Science, 2016, 352(6292): 1388-1389. |
2 | 程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展[J]. 环境化学, 2022, 41(1): 288-304. |
CHENG Jiaxin, LI Rongxing, YANG Haitao, et al. Review of three-dimensional electrodes for bio-refractory organic wastewater treatment[J]. Environmental Chemistry, 2022, 41(1): 288-304. | |
3 | TRAPIDO M, EPOLD I, BOLOBAJEV J, et al. Emerging micropollutants in water/wastewater: growing demand on removal technologies[J]. Environmental Science and Pollution Research International, 2014, 21(21): 12217-12222. |
4 | 卢鹏, 胡雪利, 张桂枝, 等. 光催化技术在降解微污染物抗生素中的应用研究[J]. 应用化工, 2020, 49(9): 2358-2363. |
LU Peng, HU Xueli, ZHANG Guizhi, et al. Application of photocatalytic technology in degradation of micro-pollutant antibiotics[J]. Applied Chemical Industry, 2020, 49(9): 2358-2363. | |
5 | YANG Shengnan, LIU Yanbiao, SHEN Chensi, et al. Rapid decontamination of tetracycline hydrolysis product using electrochemical CNT filter: mechanism, impacting factors and pathways[J]. Chemosphere, 2020, 244: 125525. |
6 | LI Na, ZHOU Long, JIN Xiaoying, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework[J]. Journal of Hazardous Materials, 2019, 366: 563-572. |
7 | 石秋俊, 刘安迪, 唐柏彬, 等. Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶[J]. 环境科学, 2020, 41(4): 1725-1733. |
SHI Qiujun, LIU Andi, TANG Bobin, et al. Electrocatalytic oxidation of sulfadiazine with Ni-doped Sb-SnO2 ceramic ring particle electrode[J]. Environmental Science, 2020, 41(4): 1725-1733. | |
8 | 吴文瞳, 张玲玲, 李子富, 等. 高级氧化技术降解抗生素及去除耐药性的研究进展[J]. 化工进展, 2021, 40(8): 4551-4561. |
WU Wentong, ZHANG Lingling, LI Zifu, et al. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4551-4561. | |
9 | 姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401. |
JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 389-401. | |
10 | 张钤, 崔敏华, 陈蕾, 等. 生物电化学技术降解疏水性新兴污染物的研究进展[J]. 化工进展, 2021, 40(12): 6846-6858. |
ZHANG Qian, CUI Minhua, CHEN Lei, et al. A critical review of bioelectrochemical system in the degradation of hydrophobic emerging contaminants[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6846-6858. | |
11 | 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. |
SUN Yi, YU Liliang, HUANG Haobin, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756. | |
12 | CHAPLIN Brian P. The prospect of electrochemical technologies advancing worldwide water treatment[J]. Accounts of Chemical Research, 2019, 52(3): 596-604. |
13 | 王超, 姚淑美, 彭叶平, 等. 高级氧化法处理抗生素废水研究进展[J]. 化工环保, 2018, 38(2): 135-140. |
WANG Chao, YAO Shumei, PENG Yeping, et al. Research progresses on treatment of antibiotics wastewater by advanced oxidation process[J]. Environmental Protection of Chemical Industry, 2018, 38(2): 135-140. | |
14 | MOREIRA F C, BOAVENTURA R A, BRILLAS E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. |
15 | 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132. |
ZHAO Yuanyuan, WANG Dejun, ZHAO Chaocheng. Progress in electrode materials for refractory wastewater treatment by electro-catalytic oxidation[J]. Materials Reports, 2019, 33(7): 1125-1132. | |
16 | GU Hongbo, XIE Wenhao, DU Ai, et al. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater[J]. Catalysis Reviews, 2021: 1-51. |
17 | HE Yapeng, ZHAO Dandi, LIN Haibo, et al. Design of diamond anodes in electrochemical degradation of organic pollutants[J]. Current Opinion in Electrochemistry, 2022, 32: 100878. |
18 | Carolina ESPINOZA L, Christian CANDIA-ONFRAY, VIDAL Jorge, et al. Influence of the chemical nature of boron-doped diamond anodes on wastewater treatments[J]. Current Opinion in Solid State and Materials Science, 2021, 25(6): 100963. |
19 | NIDHEESH P V, DIVYAPRIYA G, OTURAN Nihal, et al. Environmental applications of boron-doped diamond electrodes: 1. applications in water and wastewater treatment[J]. ChemElectroChem, 2019, 6(8): 2124-2142. |
20 | YANG Nianjun, YU Siyu, MACPHERSON Julie V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204. |
21 | PANIZZA Marco, CERISOLA Giacomo. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. |
22 | HE Yapeng, LIN Haibo, GUO Zhongcheng, et al. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants[J]. Separation and Purification Technology, 2019, 212: 802-821. |
23 | SILVA Salatiel W, NAVARRO Emma M O, RODRIGUES Marco A S, et al. Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin[J]. Journal of Electroanalytical Chemistry, 2019, 832: 112-120. |
24 | HAIDAR Mariam, DIRANY Ahmad, Ignasi SIRÉS, et al. Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode[J]. Chemosphere, 2013, 91(9): 1304-1309. |
25 | DIVYAPRIYA G, NIDHEESH P V. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications[J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100921. |
26 | DE FREITAS ARAÚJO Karla Caroline, SILVA Djalma Ribeiro DA, DOS SANTOS Elisama Vieira, et al. Investigation of persulfate production on BDD anode by understanding the impact of water concentration[J]. Journal of Electroanalytical Chemistry, 2020, 860: 113927. |
27 | SHIN Yong Uk, YOO Ha Young, Yong Yoon AHN, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation[J]. Applied Catalysis B: Environmental, 2019, 254: 156-165. |
28 | YAO Jie, ZHANG Yan, DONG Zekun. Enhanced degradation of contaminants of emerging concern by electrochemically activated peroxymonosulfate: performance, mechanism, and influencing factors[J]. Chemical Engineering Journal, 2021, 415: 128938. |
29 | MATZEK Laura W, TIPTON Matthew J, FARMER Abigail T, et al. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement[J]. Environmental Science & Technology, 2018, 52(10): 5875-5883. |
30 | LAN Yandi, COETSIER Clémence, CAUSSERAND Christel, et al. On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode[J]. Electrochimica Acta, 2017, 231: 309-318. |
31 | SANTOS Géssica O S, EGUILUZ Katlin I B, SALAZAR-BANDA Giancarlo R, et al. Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes[J]. Journal of Electroanalytical Chemistry, 2020, 857: 113756. |
32 | CARRILLO-ABAD J, MORA-GÓMEZ J, GARCÍA-GABALDÓN M, et al. Comparison between an electrochemical reactor with and without membrane for the nor oxidation using novel ceramic electrodes[J]. Journal of Environmental Management, 2020, 268: 110710. |
33 | AMMAR Hafedh Belhadj, BRAHIM Mabrouk Ben, Ridha ABDELHÉDI, et al. Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation[J]. Separation and Purification Technology, 2016, 157: 9-16. |
34 | 孙智宇, 张峰, 崔建国. Cl-、NH4 +、CO3 2-离子和天然有机物对掺硼金刚石电极电解制备过硫酸盐的影响[J]. 环境化学, 2020, 39(10): 2878-2886. |
SUN Zhiyu, ZHANG Feng, CUI Jianguo. The effect of Cl-, NH4 +, CO3 2- ions and natural organic matter on persulfate preparation by boron-doped diamond electrode electrolysis[J]. Environmental Chemistry, 2020, 39(10): 2878-2886. | |
35 | RADJENOVIC Jelena, PETROVIC Mira. Removal of sulfamethoxazole by electrochemically activated sulfate: implications of chloride addition[J]. Journal of Hazardous Materials, 2017, 333: 242-249. |
36 | COLEDAM Douglas A C, PUPO Marília M S, SILVA Bianca F, et al. Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation[J]. Chemosphere, 2017, 168: 638-647. |
37 | CARNEIRO Jussara F, AQUINO José M, SILVA Adilson J, et al. The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: kinetics and follow-up of oxidation intermediates and antimicrobial activity[J]. Chemosphere, 2018, 206: 674-681. |
38 | CARNEIRO Jussara F, AQUINO José M, SILVA Bianca F, et al. Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: evolution of main oxidation byproducts and toxicity[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104433. |
39 | YANG Wanlin, TAN Jilin, CHEN Yinhao, et al. Relationship between substrate type and BDD electrode structure, performance and antibiotic tetracycline mineralization[J]. Journal of Alloys and Compounds, 2022, 890: 161760. |
40 | GONZAGA Isabelle M D, MORATALLA Angela, EGUILUZ Katlin I B, et al. Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes[J]. Science of the Total Environment, 2020, 736: 139536. |
41 | WACHTER N, AQUINO J M, DENADAI M, et al. Electrochemical degradation of the antibiotic ciprofloxacin in a flow reactor using distinct BDD anodes: reaction kinetics, identification and toxicity of the degradation products[J]. Chemosphere, 2019, 234: 461-470. |
42 | SANTOS A J, FORTUNATO G V, KRONKA M S, et al. Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes[J]. Environmental Research, 2022, 204(Pt A): 112027. |
43 | SILVA S W, NAVARRO E M, RODRIGUES M A, et al. The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin[J]. Chemosphere, 2018, 210: 615-623. |
44 | HE Yapeng, LIN Haibo, WANG Xue, et al. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation[J]. Chemical Communications, 2016, 52(51): 8026-8029. |
45 | Jacek RYL, CIESLIK Mateusz, ZIELINSKI Artur, et al. High-temperature oxidation of heavy boron-doped diamond electrodes: microstructural and electrochemical performance modification[J]. Materials, 2020, 13(4): 964. |
46 | LI Xiaojie, LI Hongji, LI Mingji, et al. Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants[J]. Carbon, 2018, 129: 543-551. |
47 | JIAN Ze, HEIDE Maximilian, YANG Nianjun, et al. Diamond fibers for efficient electrocatalytic degradation of environmental pollutants[J]. Carbon, 2021, 175: 36-42. |
48 | PARK S W, YUN E T, SHIN H J, et al. Three-dimensional construction of electrode materials using TiC nanoarray substrates for highly efficient electrogeneration of sulfate radicals and molecular hydrogen in a single electrolysis cell[J]. Journal of Materials Chemistry A, 2021, 9(19): 11705-11717. |
49 | MIAO Dongtian, LIU Ting, YU Yanglei, et al. Study on degradation performance and stability of high temperature etching boron-doped diamond electrode[J]. Applied Surface Science, 2020, 514: 146091. |
50 | MIAO Dongtian, LI Zhishen, CHEN Yinhao, et al. Preparation of macro-porous 3D boron-doped diamond electrode with surface micro structure regulation to enhance electrochemical degradation performance[J]. Chemical Engineering Journal, 2022, 429: 132366. |
51 | KÖRBAHTI Bahadır K, Selin TAŞYÜREK. Electrochemical oxidation of sulfadiazine antibiotic using boron-doped diamond anode: application of response surface methodology for process optimization[J]. Desalination and Water Treatment, 2016, 57(6): 2522-2533. |
52 | COLEDAM D A, AQUINO J M, SILVA B F, et al. Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products[J]. Electrochimica Acta, 2016, 213: 856-864. |
53 | BRINZILA C I, MONTEIRO N, PACHECO M J, et al. Degradation of tetracycline at a boron-doped diamond anode: influence of initial pH, applied current intensity and electrolyte[J]. Environmental Science and Pollution Research, 2014, 21(14): 8457-8465. |
54 | KÖRBAHTI B K, ALACA S. Electrochemical degradation of tetracycline antibiotic with boron-doped diamond electrodes and effect of parameters on removal of reaction intermediates[J]. Desalination and Water Treatment, 2021, 236: 285-299. |
55 | HE Yapeng, DONG Yujie, HUANG Weimin, et al. Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug[J]. Journal of Electroanalytical Chemistry, 2015, 759: 167-173. |
56 | 曲有鹏, 吕江维, 冯玉杰, 等. 硼掺杂金刚石薄膜电极降解青霉素G钠废水机制[J]. 哈尔滨工业大学学报, 2020, 52(6): 119-125. |
QU Youpeng, Jiangwei LYU, FENG Yujie, et al. Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 119-125. | |
57 | KÖRBAHTI B K, TAŞYÜREK S. Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology[J]. Environmental Science and Pollution Research International, 2015, 22(5): 3265-3278. |
58 | DOMÍNGUEZ J R, GONZÁLEZ T, PALO P, et al. Electrochemical advanced oxidation of carbamazepine on boron-doped diamond anodes. influence of operating variables[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8353-8359. |
59 | GONZÁLEZ T, DOMÍNGUEZ J R, PALO P, et al. Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution[J]. Desalination, 2011, 280(1/2/3): 197-202. |
60 | PERIYASAMY S, LIN X, GANIYU S O, et al. Insight into BDD electrochemical oxidation of florfenicol in water: kinetics, reaction mechanism, and toxicity[J]. Chemosphere, 2022, 288(Pt 1): 132433. |
61 | LI Guangchao, ZHOU Shiqing, SHI Zhou, et al. Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: Mechanisms, kinetics and pathways[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17740-17750. |
62 | MONTAÑÉS M T, GARCÍA-GABALDÓN M, Ll ROCA-PÉREZ, et al. Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109923. |
63 | YANG Kui, FENG Xingwei, LIN Hui, et al. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: role of direct electron transfer and hydroxyl radical oxidation[J]. Journal of Hazardous Materials, 2022, 423: 127239. |
64 | MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. |
65 | RYAN D R, MAHER E K, HEFFRON J, et al. Electrocoagulation-electrooxidation for mitigating trace organic compounds in model drinking water sources[J]. Chemosphere, 2021, 273: 129377. |
66 | CUERDA-CORREA E M, ALEXANDRE-FRANCO M F, FERNÁNDEZ-GONZÁLEZ C. Advanced oxidation processes for the removal of antibiotics from water. an overview[J]. Water, 2019, 12(1): 102. |
67 | 曲有鹏, 吕江维, 董跃, 等. 电催化-生物电化学耦合系统处理青霉素废水的机制[J]. 环境科学, 2021, 42(5): 2378-2384. |
QU Youpeng, Jiangwei LYU, DONG Yue, et al. Mechanisms of penicillin wastewater treatment by coupled electrocatalytic and bioelectrochemical systems[J]. Environmental Science, 2021, 42(5): 2378-2384. | |
68 | SONG Yang, XIAO Mengyao, LI Ziyang, et al. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration[J]. Chemosphere, 2022, 286(Pt 2): 131680. |
69 | DU Xing, MO Zhuoyu, LI Ziyang, et al. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: antibiotics degradation and biofouling[J]. Environment International, 2021, 146: 106291. |
70 | CUPRYS Agnieszka, THOMSON Paisley, OUARDA Yassine, et al. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation[J]. Journal of Hazardous Materials, 2020, 389: 121890. |
71 | PATIDAR R, SRIVASTAVA V C. Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: multi-response optimization and cost analysis[J]. Chemosphere, 2020, 257: 127121. |
72 | SILVA Fernando, SAEZ Cristina, LANZA Marcos, et al. The role of mediated oxidation on the electro-irradiated treatment of amoxicillin and ampicillin polluted wastewater[J]. Catalysts, 2018, 9(1): 9. |
73 | ENNOURI Rawdha, LAVECCHIA Roberto, ZUORRO Antonio, et al. Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation[J]. Journal of Water Process Engineering, 2021, 41: 101995. |
74 | LEON-CONDES C, BARRERA-DÍAZ C, BARRIOS J, et al. A coupled ozonation–electrooxidation treatment for removal of bisphenol A, nonylphenol and triclosan from wastewater sludge[J]. International Journal of Environmental Science and Technology, 2017, 14(4): 707-716. |
75 | LIU Xiaocheng, ZHOU Yaoyu, ZHANG Jiachao, et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps[J]. Chemical Engineering Journal, 2018, 347: 379-397. |
76 | OTURAN M A. Outstanding performances of the BDD film anode in electro-Fenton process: applications and comparative performance[J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100925. |
77 | VIDAL Jorge, Cesar HUILIÑIR, SANTANDER Rocío, et al. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water[J]. Environmental Science and Pollution Research International, 2019, 26(5): 4404-4414. |
78 | MURILLO-SIERRA J C, SIRÉS I, BRILLAS E, et al. Advanced oxidation of real sulfamethoxazole + trimethoprim formulations using different anodes and electrolytes[J]. Chemosphere, 2018, 192: 225-233. |
79 | OTURAN Nihal, BO Jiang, TRELLU Clément, et al. Comparative performance of ten electrodes in electro-Fenton process for removal of organic pollutants from water[J]. ChemElectroChem, 2021, 8(17): 3294-3303. |
80 | GANZENKO Oleksandra, TRELLU Clément, OTURAN Nihal, et al. Electro-Fenton treatment of a complex pharmaceutical mixture: mineralization efficiency and biodegradability enhancement[J]. Chemosphere, 2020, 253: 126659. |
81 | ANTONIN V S, AQUINO J M, SILVA B F, et al. Comparative study on the degradation of cephalexin by four electrochemical advanced oxidation processes: evolution of oxidation intermediates and antimicrobial activity[J]. Chemical Engineering Journal, 2019, 372: 1104-1112. |
82 | MOREIRA F C, SOLER J, ALPENDURADA M F, et al. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes[J]. Water Research, 2016, 105: 251-263. |
[1] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[2] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
[3] | YI Xuenong, LI Jingmei, GAO Yuqiong. Oxidative degradation of naproxen in water by UV-Fe(Ⅵ) process [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4562-4570. |
[4] | ZHOU Yongquan, ZHANG Ai, LIU Yanan, WANG Zheng. Removal of glucocorticoids from aqueous solution by plasma jet combined with activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2209-2215. |
[5] | WANG Jikun, LI Yang, CHEN Guifeng, LIU Min, KOU Lihong, WANG Qi, HE Yicong. Catalytic oxidation mechanism of organics degradation by ozone in high-salt wastewater of coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 493-502. |
[6] | LIN Shaohua, WU Haixia, GAO Liping, YU Yiping. Current status and future prospects of modified carbon nanotube and its composite materials application for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3466-3479. |
[7] | Yanhong LUO, Xiuping YUE, Yueru JIANG, Bowei ZHAO, Yanjuan GAO, Yanqing DUAN. Recent progress of advanced oxidation processes in indole degradation [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1025-1034. |
[8] | Shuo YANG, Weiwei YU, Lun YANG, Banghao DU, Mingyuan XIE, Chenju ZHAO, Qiaoling WAN, Weiliang PAN. Degradation mechanism of 17β-estradiol by nano-zero valent iron in aqueous solution [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3826-3834. |
[9] | CUI Xi, LIU Bingling, HE Chongheng, TIAN Hengshui. Research on thermal degradation mechanism and thermal stability of aliphatic polyether-polyurethane elastomer [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3585-3589. |
[10] | CHENG Zihong1,GAO Zhanxian1,XU Jun1,WANG Ren1,MA Wei1,HAN Diqiu2. Glucose,starch,and phenol electrochemical oxidation coupled with hydrogen production [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1542-1546. |
[11] |
LIU Pan1,3,GUO Xiaoning2,NAN Hao2,LIU Hong2,LI Shengnan1.
Catalytic degradation mechanism of rhodamine B by photocatalyst prepared from furnace slag [J]. Chemical Industry and Engineering Progree, 2010, 29(6): 1075-. |
[12] | ZHANG Minhua,LI Chunhua,JIANG Haoxi. Thermal degradation mechanism of polystyrene by TG-MS [J]. Chemical Industry and Engineering Progree, 2008, 27(4): 609-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |