Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6627-6643.DOI: 10.16085/j.issn.1000-6613.2022-0195
• Resources and environmental engineering • Previous Articles Next Articles
Received:
2022-02-06
Revised:
2022-03-14
Online:
2022-12-29
Published:
2022-12-20
作者简介:
齐亚兵(1983—),男,博士,讲师,研究方向为传质与分离技术、水处理技术。E-mail:yabingqi@xauat.edu.cn。
基金资助:
CLC Number:
QI Yabing. Research progress on degradation of antibiotics by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643.
齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展[J]. 化工进展, 2022, 41(12): 6627-6643.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0195
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 热 | CTC=20μmol/L,PS/TC(摩尔比)=500,T=60℃,pH初始=4,t=120min | 降解率99.94%;矿化率73.05%;降解路径包括脱甲基、脱氨基、脱羟基、加氧、开环、水解等;伪一级动力学降解;TC降解表观活化能82.98kJ/mol | SO | [ |
MNZ | 热 | CMNZ=100mg/L,CPS=20mmol/L,T=60℃,未调节pH,t=180min | 降解率96.6%;矿化率(10h)97.2%;MNZ降解表观活化能100.04kJ/mol | SO | [ |
CFX、CFD、CFO | 热 | CCEFs=0.1mmol/L,CPS=1mmol/L,T=60℃,pH初始=7 | Cl-、HCO | SO | [ |
SMX | 热 | CSMX=30μmol/L,CPS=2mmol/L,T=30~60℃,pH=4~10.1 | 伪一级动力学降解,速率常数随温度和pH的增加而显著增加;HCO | SO | [ |
TC、OTC、CTC | 热 | CTCs=30μmol/L,CPS=2mmol/L,T=40~70℃,pH=4~9 | 伪一级动力学降解,速率常数随温度和pH的增加而显著增加;降解率排序OTC>CTC>TC;四环素降解路径包括N-脱甲基、羟基氧化、脱水 | [ | |
SCP | 热 | CSCP=3.51μmol/L,CPS=140μmol/L,T=40℃,pH=3~10,t=300min | 降解率>85%;Cl-、HCO | SO | [ |
SMX | 热 | CSMX=100mg/L,CPMS=400μmol/L,pH=3~11,T=40~80℃ | 降解率随PS浓度和温度增大而增大,pH对降解率有重要影响,pH为9.5时SMX降解率最高;反应的活化能为103kJ/mol;酸性pH时SO | SO | [ |
CAP | 纳米Fe0+热 | HA、NO | SO | [ | |
SMX | MnO2+热 | CSMX=10mg/L, | MnO2+热的协同效应为88.62%;降解路径包括C—N键断裂、苯环羟基化、氨基脱氢、电子转移 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 热 | CTC=20μmol/L,PS/TC(摩尔比)=500,T=60℃,pH初始=4,t=120min | 降解率99.94%;矿化率73.05%;降解路径包括脱甲基、脱氨基、脱羟基、加氧、开环、水解等;伪一级动力学降解;TC降解表观活化能82.98kJ/mol | SO | [ |
MNZ | 热 | CMNZ=100mg/L,CPS=20mmol/L,T=60℃,未调节pH,t=180min | 降解率96.6%;矿化率(10h)97.2%;MNZ降解表观活化能100.04kJ/mol | SO | [ |
CFX、CFD、CFO | 热 | CCEFs=0.1mmol/L,CPS=1mmol/L,T=60℃,pH初始=7 | Cl-、HCO | SO | [ |
SMX | 热 | CSMX=30μmol/L,CPS=2mmol/L,T=30~60℃,pH=4~10.1 | 伪一级动力学降解,速率常数随温度和pH的增加而显著增加;HCO | SO | [ |
TC、OTC、CTC | 热 | CTCs=30μmol/L,CPS=2mmol/L,T=40~70℃,pH=4~9 | 伪一级动力学降解,速率常数随温度和pH的增加而显著增加;降解率排序OTC>CTC>TC;四环素降解路径包括N-脱甲基、羟基氧化、脱水 | [ | |
SCP | 热 | CSCP=3.51μmol/L,CPS=140μmol/L,T=40℃,pH=3~10,t=300min | 降解率>85%;Cl-、HCO | SO | [ |
SMX | 热 | CSMX=100mg/L,CPMS=400μmol/L,pH=3~11,T=40~80℃ | 降解率随PS浓度和温度增大而增大,pH对降解率有重要影响,pH为9.5时SMX降解率最高;反应的活化能为103kJ/mol;酸性pH时SO | SO | [ |
CAP | 纳米Fe0+热 | HA、NO | SO | [ | |
SMX | MnO2+热 | CSMX=10mg/L, | MnO2+热的协同效应为88.62%;降解路径包括C—N键断裂、苯环羟基化、氨基脱氢、电子转移 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | 微波 | CTCH=60mg/L,CPS=6mmol/L,pH初始=6.5,MW功率=500W,t=5min | 降解率99.4%(MW+PS)、10.3%(MW)、7.5%(CH)、67.9%(CH+PS) | SO | [ |
LVF、CIP、NOR | 微波+三维ZnCo2O4、微波+三维C@ZnCo2O4、微波+三维C@ZnFe2O4 | CLVF=10mg/L,CCIP=10mg/L,CNOR=5mg/L; | 降解率92.1%,矿化率69.8%(LVF,微波+三维ZnCo2O4);降解率91.7%,矿化率73.1%(CIP,微波+三维C@ZnCo2O4);降解率86.5%,矿化率69.6%(NOR,微波+三维C@ZnFe2O4);降解途径包括脱甲基化、脱羟基、哌嗪化、羧化及开环 | SO | [ |
OFX | 微波+Cu-Ce-轮胎炭 | COFX=300mg/L,C催化剂=2g/L,CPMS=12g/L,微波功率=400W,T=60℃,t=60min | 降解率95.8%,矿化率87.6% | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | 微波 | CTCH=60mg/L,CPS=6mmol/L,pH初始=6.5,MW功率=500W,t=5min | 降解率99.4%(MW+PS)、10.3%(MW)、7.5%(CH)、67.9%(CH+PS) | SO | [ |
LVF、CIP、NOR | 微波+三维ZnCo2O4、微波+三维C@ZnCo2O4、微波+三维C@ZnFe2O4 | CLVF=10mg/L,CCIP=10mg/L,CNOR=5mg/L; | 降解率92.1%,矿化率69.8%(LVF,微波+三维ZnCo2O4);降解率91.7%,矿化率73.1%(CIP,微波+三维C@ZnCo2O4);降解率86.5%,矿化率69.6%(NOR,微波+三维C@ZnFe2O4);降解途径包括脱甲基化、脱羟基、哌嗪化、羧化及开环 | SO | [ |
OFX | 微波+Cu-Ce-轮胎炭 | COFX=300mg/L,C催化剂=2g/L,CPMS=12g/L,微波功率=400W,T=60℃,t=60min | 降解率95.8%,矿化率87.6% | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 超声波 | CTC=0.052mmol/L,CPDS=4mmol/L,超声功率=500W,超声频率=35kHz,pH=10,t=120min | 降解率96.5%,矿化率61.2%,COD去除率74% | SO | [ |
SDZ | 超声+Fe0 | CSDZ=20mg/L, | 降解率93.2%;SO | [ | |
AMX | 超声+Fe0 | CAMX=0.1mmol/L, | 降解率100%;降解路径:羟基化反应和β-内酰胺开环 | SO | [ |
CIP | 超声 | CCIP=15mg/L,CPS=0.1g/L,超声功率=152W,pH=6.97,T=25℃,t=60min | 降解率91.57%,反应动力学常数42.47×10-3min-1;酸性条件下SO | SO | [ |
CIP | 超声+纳米Zn0 | CCIP=50mg/L,CPS=1200mg/L, | 降解率55%,COD去除率30% | [ | |
MNZ | 超声+CuCoFe2O4@MC/AC | CMNZ=5mg/L,C催化剂=0.4g/L,CPS=6mmol/L,超声频率=60kHz,pH=3,t=15min | 降解率93.78%,矿化率87.5% | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 超声波 | CTC=0.052mmol/L,CPDS=4mmol/L,超声功率=500W,超声频率=35kHz,pH=10,t=120min | 降解率96.5%,矿化率61.2%,COD去除率74% | SO | [ |
SDZ | 超声+Fe0 | CSDZ=20mg/L, | 降解率93.2%;SO | [ | |
AMX | 超声+Fe0 | CAMX=0.1mmol/L, | 降解率100%;降解路径:羟基化反应和β-内酰胺开环 | SO | [ |
CIP | 超声 | CCIP=15mg/L,CPS=0.1g/L,超声功率=152W,pH=6.97,T=25℃,t=60min | 降解率91.57%,反应动力学常数42.47×10-3min-1;酸性条件下SO | SO | [ |
CIP | 超声+纳米Zn0 | CCIP=50mg/L,CPS=1200mg/L, | 降解率55%,COD去除率30% | [ | |
MNZ | 超声+CuCoFe2O4@MC/AC | CMNZ=5mg/L,C催化剂=0.4g/L,CPS=6mmol/L,超声频率=60kHz,pH=3,t=15min | 降解率93.78%,矿化率87.5% | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
CFX | UV | CCFX=0.1mmol/L,CPS=1mmol/L,λ=254nm,辐照强度=0.18×10-8kWh/(L·s),pH=7,t=20min | 降解率87%(实际废水水质)、96%(地表水水质);低浓度和高浓度Cl-对CFX的降解分别具有抑制和促进作用;HCO | SO | [ |
CAP | UV | 直接光解为CAP降解的主要路径;富马酸和腐殖酸对CAP降解有重要影响,NO | SO | [ | |
NOR、ENR | UV | CNOR=0.013mmol/L,CENR=0.013mmol/L,CPS=0.05mmol/L,pH=9,T=20℃ | 速率常数:(0.186±0.018)min-1(NOR)、(0.250±0.029)min-1(ENR)。NOR降解路径:(1)光子攻击羧基脱羧;(2)喹诺酮核上C—F键的脱氟;(3)SO | SO | [ |
AMP、CLO、OXA、CFX、CPD、LEV、NOR、CIP | UV | C抗生素=40μmol/L,CPS=500μmol/L,光强度=398μW/cm2,pH=6.5 | 降解率均大于60%,降解率排序CFX>OXA>AMP>LEV>NOR>CIP>CLO>CPD;OXA、CFX的降解主要靠直接光解,CIP的降解依靠反应活性物种和直接光解 | SO | [ |
SMT | UV、VUV | 降解率、矿化率和活化率VUV+PS体系>UV+PS体系;共存离子对SMT降解的抑制排序为NO | SO | [ | |
SMZ | UV+Cu0-Cu2O | CSMZ=50mg/L,C催化剂=0.2g/L,CPS=0.8g/L,λ=365nm,T=25℃,pH=7,t=30min | 降解率100%,矿化率30%;催化剂循环使用5次后,降解率衰减12.2% | OH·、SO | [ |
AMX、BEN、CFT、CFX、MER、AZT、SUL | Vis+MCN | MIP指数越小,氧化难度越低;MIP指数越大,氧化难度越高;降解路径包括β-内酰胺环的断裂或水解、C—N键和C—C键的直接断裂、侧链的脱落、特异性结合 | [ | ||
CIP | Vis+SCN | CCIP=10mg/L,C催化剂=0.4g/L,CPS=2mmol/L,pH=6,t=30min | 降解率95%,速率常数0.132min-1(SCN+PS)、0.0102min-1(SCN)、0.0649min-1(g-C3N4);降解路径包括哌嗪开环、脱羰、脱羧、脱氟 | O | [ |
TC | Vis+N-CQDs/g-C3N4 | CTC=20mg/L,C催化剂=0.5g/L,CPS=0.6g/L,420nm≤λ≤780nm,pH=6.3,t=60min | 降解率91%;体系协同效应:(1)N-CQDs增强了可见光响应,促进光生载流子的分离;(2)PS作为电子受体,进一步分离光生电子和空穴;(3)复合催化剂作为优良电子桥,更多光诱导电子可促进PS的活化 | O | [ |
CIP | 模拟太阳光+低品位钛矿 | CCIP=1mg/L,CPS=3.5mg/L,C钛矿=200mg/L,辐照强度=385W/m2,pH≈6.5,t=90min | 降解率97.7%±0.6% | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
CFX | UV | CCFX=0.1mmol/L,CPS=1mmol/L,λ=254nm,辐照强度=0.18×10-8kWh/(L·s),pH=7,t=20min | 降解率87%(实际废水水质)、96%(地表水水质);低浓度和高浓度Cl-对CFX的降解分别具有抑制和促进作用;HCO | SO | [ |
CAP | UV | 直接光解为CAP降解的主要路径;富马酸和腐殖酸对CAP降解有重要影响,NO | SO | [ | |
NOR、ENR | UV | CNOR=0.013mmol/L,CENR=0.013mmol/L,CPS=0.05mmol/L,pH=9,T=20℃ | 速率常数:(0.186±0.018)min-1(NOR)、(0.250±0.029)min-1(ENR)。NOR降解路径:(1)光子攻击羧基脱羧;(2)喹诺酮核上C—F键的脱氟;(3)SO | SO | [ |
AMP、CLO、OXA、CFX、CPD、LEV、NOR、CIP | UV | C抗生素=40μmol/L,CPS=500μmol/L,光强度=398μW/cm2,pH=6.5 | 降解率均大于60%,降解率排序CFX>OXA>AMP>LEV>NOR>CIP>CLO>CPD;OXA、CFX的降解主要靠直接光解,CIP的降解依靠反应活性物种和直接光解 | SO | [ |
SMT | UV、VUV | 降解率、矿化率和活化率VUV+PS体系>UV+PS体系;共存离子对SMT降解的抑制排序为NO | SO | [ | |
SMZ | UV+Cu0-Cu2O | CSMZ=50mg/L,C催化剂=0.2g/L,CPS=0.8g/L,λ=365nm,T=25℃,pH=7,t=30min | 降解率100%,矿化率30%;催化剂循环使用5次后,降解率衰减12.2% | OH·、SO | [ |
AMX、BEN、CFT、CFX、MER、AZT、SUL | Vis+MCN | MIP指数越小,氧化难度越低;MIP指数越大,氧化难度越高;降解路径包括β-内酰胺环的断裂或水解、C—N键和C—C键的直接断裂、侧链的脱落、特异性结合 | [ | ||
CIP | Vis+SCN | CCIP=10mg/L,C催化剂=0.4g/L,CPS=2mmol/L,pH=6,t=30min | 降解率95%,速率常数0.132min-1(SCN+PS)、0.0102min-1(SCN)、0.0649min-1(g-C3N4);降解路径包括哌嗪开环、脱羰、脱羧、脱氟 | O | [ |
TC | Vis+N-CQDs/g-C3N4 | CTC=20mg/L,C催化剂=0.5g/L,CPS=0.6g/L,420nm≤λ≤780nm,pH=6.3,t=60min | 降解率91%;体系协同效应:(1)N-CQDs增强了可见光响应,促进光生载流子的分离;(2)PS作为电子受体,进一步分离光生电子和空穴;(3)复合催化剂作为优良电子桥,更多光诱导电子可促进PS的活化 | O | [ |
CIP | 模拟太阳光+低品位钛矿 | CCIP=1mg/L,CPS=3.5mg/L,C钛矿=200mg/L,辐照强度=385W/m2,pH≈6.5,t=90min | 降解率97.7%±0.6% | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | 电化学 | 阴阳极材质:铂。CTCH=50mg/L,CPS=12.6mmol/L,J=13.33mA/cm2,pH=4.42,T=25℃,t=4h | 降解率81.1%,矿化率31.3% | SO | [ |
CIP | 电化学 | 阴阳极材质:铁。CCIP=10mg/L,CPS=0.42mmol/L,J=1.45mA/cm2,pH=5,t=75min | 降解率>94%,开始阶段CIP的氧化降解起主要作用,随后电絮凝在CIP的降解中起主要作用 | OH·(主导)、SO | [ |
SMZ | 电化学 | 阴阳极材质:硼掺杂金刚石。CSMZ=50mg/L,CPS=0.4g/L,J=21mA/cm2,pH=4,t=15min | 降解率100%,在相同条件下,电化学活化PS对SMZ的降解率高于电芬顿对SMZ的降解率 | SO | [ |
AMP | 电化学 | 阳极材质:硼掺杂金刚石。阴极材质:铂。CAMP=1.1mg/L,CPS=250mg/L,J=25mA/cm2, | 降解率100%(电化学+太阳辐射+PS,8min),100%(电化学+PS,15min),约90%(电化学,30min);降解率随PS浓度和电流密度的增大、AMP浓度的减小而增大;Cl-促进AMP的降解,HA抑制AMP的降解,HCO | [ | |
SMZ | 电化学 | 优化条件:I=18.4mA,CPS=3.54mmol/L,pH=3.43,t=60min | 影响因素重要性排序:电解时间>pH>电流>PS浓度 | [ | |
TC | 电化学+纳米MnFe2O4 | 阳极:铂板,阴极:石墨板。CTC=25mg/L, | 降解率23.82%(电化学)、36.34%(MnFe2O4+PS)、53.27%(电化学+PS)、86.23%(电化学+MnFe2O4+PS) | SO | [ |
TC、OTC、NOR | 电化学+超声 | CTC=0.045mmol/L,COTC=0.04mmol/L,CNOR=0.031mmol/L,CPS∶CTC=200∶1,CPS∶COTC= 100∶1,CPS∶CNOR=50∶1,超声功率=100W,电极电位=4V,T=40℃,pH=3,t=120min | 降解率71.45%(TC)、58.4%(OTC)、50.7%(NOR) | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | 电化学 | 阴阳极材质:铂。CTCH=50mg/L,CPS=12.6mmol/L,J=13.33mA/cm2,pH=4.42,T=25℃,t=4h | 降解率81.1%,矿化率31.3% | SO | [ |
CIP | 电化学 | 阴阳极材质:铁。CCIP=10mg/L,CPS=0.42mmol/L,J=1.45mA/cm2,pH=5,t=75min | 降解率>94%,开始阶段CIP的氧化降解起主要作用,随后电絮凝在CIP的降解中起主要作用 | OH·(主导)、SO | [ |
SMZ | 电化学 | 阴阳极材质:硼掺杂金刚石。CSMZ=50mg/L,CPS=0.4g/L,J=21mA/cm2,pH=4,t=15min | 降解率100%,在相同条件下,电化学活化PS对SMZ的降解率高于电芬顿对SMZ的降解率 | SO | [ |
AMP | 电化学 | 阳极材质:硼掺杂金刚石。阴极材质:铂。CAMP=1.1mg/L,CPS=250mg/L,J=25mA/cm2, | 降解率100%(电化学+太阳辐射+PS,8min),100%(电化学+PS,15min),约90%(电化学,30min);降解率随PS浓度和电流密度的增大、AMP浓度的减小而增大;Cl-促进AMP的降解,HA抑制AMP的降解,HCO | [ | |
SMZ | 电化学 | 优化条件:I=18.4mA,CPS=3.54mmol/L,pH=3.43,t=60min | 影响因素重要性排序:电解时间>pH>电流>PS浓度 | [ | |
TC | 电化学+纳米MnFe2O4 | 阳极:铂板,阴极:石墨板。CTC=25mg/L, | 降解率23.82%(电化学)、36.34%(MnFe2O4+PS)、53.27%(电化学+PS)、86.23%(电化学+MnFe2O4+PS) | SO | [ |
TC、OTC、NOR | 电化学+超声 | CTC=0.045mmol/L,COTC=0.04mmol/L,CNOR=0.031mmol/L,CPS∶CTC=200∶1,CPS∶COTC= 100∶1,CPS∶CNOR=50∶1,超声功率=100W,电极电位=4V,T=40℃,pH=3,t=120min | 降解率71.45%(TC)、58.4%(OTC)、50.7%(NOR) | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 气相表面放电等离子体 | CTC=40mg/L,nPS∶nTC=20∶1,空气流速=1L/min,电压=7kV,pH=5.3,t=15min | 降解率87.5%,速率常数0.232min-1,协同因子1.856 | SO | [ |
SMX | 介质阻挡放电等离子体 | 增加电压、溶液pH、PMS或PDS浓度可提高SMX的降解率;SMX降解的中间产物为5-氨基-3-甲基异𫫇唑、4-氨基苯磺酸、亚硝基苯、4-硝基磺胺甲𫫇唑和羟基化产物 | SO | [ | |
TMP | 纳秒脉冲气液放电等离子 | CTMP=40mg/L,nPS∶nTMP=50,电压=30kV,pH=3.1,t=50min | 降解率94.6%(空气)、98.8%(Ar);PS和等离子体对TMP的降解有明显的协同效应,协同效应来源于SO | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | 气相表面放电等离子体 | CTC=40mg/L,nPS∶nTC=20∶1,空气流速=1L/min,电压=7kV,pH=5.3,t=15min | 降解率87.5%,速率常数0.232min-1,协同因子1.856 | SO | [ |
SMX | 介质阻挡放电等离子体 | 增加电压、溶液pH、PMS或PDS浓度可提高SMX的降解率;SMX降解的中间产物为5-氨基-3-甲基异𫫇唑、4-氨基苯磺酸、亚硝基苯、4-硝基磺胺甲𫫇唑和羟基化产物 | SO | [ | |
TMP | 纳秒脉冲气液放电等离子 | CTMP=40mg/L,nPS∶nTMP=50,电压=30kV,pH=3.1,t=50min | 降解率94.6%(空气)、98.8%(Ar);PS和等离子体对TMP的降解有明显的协同效应,协同效应来源于SO | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SMZ | 微米Fe0(μZVI) | CμZVI=0.25g/L,CPS=7.5mmol/L,pH=5,CSMZ=50μmol/L,t=30min | 降解率100% | SO | [ |
CIP | 工业废铁屑(300~450μm) | CPS=200g/L,CCIP=10mg/L,pH=7,CFe=2g/L,T=25℃±1℃,t=120min | 降解率94%,矿化率45.9% | SO | [ |
SDZ | Fe0粉(D50=87.3μm) | pH=5~9 | pH对SDZ最终降解率影响不大,Fe0∶PS=1∶1时降解率较高。攻击位点:S—C、S—N、氨基以及部分C、N原子 | SO | [ |
SDZ | 球磨硫化改性Fe0(S-ZVIbm)、球磨Fe0(ZVIbm) | pH=4~9 | 降解效果:S-ZVIbm+PS>ZVIbm+PS,硫化物层具有更大的电导率和氧化能力,因而具有更好的PS活化能力。攻击位点S—N | SO | [ |
SMX | Fe2+ | CSMX=10mg/L,SMX∶Fe2+∶PS(摩尔比)=1∶20∶80,t=50min | 连续添加Fe2+降解SMX效果最好,降解率达100% | OH·(主导),SO | [ |
TC | FeS | CTC=0.1mmol/L,pH=3,CPS=1mmol/L,CFeS=100mg/L,t=30min | 降解率100%,矿化率>50%;降解和矿化过程包括脱水、脱氢、羟基加成、脱甲基、取代、电传递、开环 | SO | [ |
CAP、TAP、CIP、NOR | FeS | CFeS=0.6g/L,pH=7,CPMS=6mmol/L,t=120min | 降解率CAP(93.5%)、TAP(98.5%)、CIP(100%)、NOR(100%) | SO Fe(Ⅳ) | [ |
SMZ | Cu2+ | 较优条件:CSMZ=25mg/L,CPS=2.5g/L,=0.2mmol/L,t=120min | 降解率94.8%~100%(pH=4~8);降解率排序Ag+>Cu2+>Mn2+>Co2+>Fe3+>Fe2+ | SO | [ |
CIP | 硫化钴中空纳米球(CoS x HNSs) | CCIP=0.01g/L,=0.08g/L,pH=8,CPMS=1.3mmol/L,T=25℃,t=60min | 降解率100%(CoS2);降解性能排序包括CoS2 HNSs>Co3S4 HNSs>Co9S8 HNSs | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SMZ | 微米Fe0(μZVI) | CμZVI=0.25g/L,CPS=7.5mmol/L,pH=5,CSMZ=50μmol/L,t=30min | 降解率100% | SO | [ |
CIP | 工业废铁屑(300~450μm) | CPS=200g/L,CCIP=10mg/L,pH=7,CFe=2g/L,T=25℃±1℃,t=120min | 降解率94%,矿化率45.9% | SO | [ |
SDZ | Fe0粉(D50=87.3μm) | pH=5~9 | pH对SDZ最终降解率影响不大,Fe0∶PS=1∶1时降解率较高。攻击位点:S—C、S—N、氨基以及部分C、N原子 | SO | [ |
SDZ | 球磨硫化改性Fe0(S-ZVIbm)、球磨Fe0(ZVIbm) | pH=4~9 | 降解效果:S-ZVIbm+PS>ZVIbm+PS,硫化物层具有更大的电导率和氧化能力,因而具有更好的PS活化能力。攻击位点S—N | SO | [ |
SMX | Fe2+ | CSMX=10mg/L,SMX∶Fe2+∶PS(摩尔比)=1∶20∶80,t=50min | 连续添加Fe2+降解SMX效果最好,降解率达100% | OH·(主导),SO | [ |
TC | FeS | CTC=0.1mmol/L,pH=3,CPS=1mmol/L,CFeS=100mg/L,t=30min | 降解率100%,矿化率>50%;降解和矿化过程包括脱水、脱氢、羟基加成、脱甲基、取代、电传递、开环 | SO | [ |
CAP、TAP、CIP、NOR | FeS | CFeS=0.6g/L,pH=7,CPMS=6mmol/L,t=120min | 降解率CAP(93.5%)、TAP(98.5%)、CIP(100%)、NOR(100%) | SO Fe(Ⅳ) | [ |
SMZ | Cu2+ | 较优条件:CSMZ=25mg/L,CPS=2.5g/L,=0.2mmol/L,t=120min | 降解率94.8%~100%(pH=4~8);降解率排序Ag+>Cu2+>Mn2+>Co2+>Fe3+>Fe2+ | SO | [ |
CIP | 硫化钴中空纳米球(CoS x HNSs) | CCIP=0.01g/L,=0.08g/L,pH=8,CPMS=1.3mmol/L,T=25℃,t=60min | 降解率100%(CoS2);降解性能排序包括CoS2 HNSs>Co3S4 HNSs>Co9S8 HNSs | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | CuFe2O4 | CTCH=50mg/L, | 降解率93% | SO | [ |
TC | Ag0.4-BiFeO3 | CTC=10mg/L, | 降解率91%,反应速率常数0.0338min-1,pH对降解率影响很小 | SO | [ |
SDZ | Fe3O4@CuO x (FCHS) | CSDZ=5mg/L,pH=7,CFCHS=0.2g/L,CPS=2mmol/L,t=200min | 降解率95%,Fe(Ⅲ)与Cu(Ⅰ)氧化还原反应产生的Fe(Ⅱ)为活化PS的主要活性位点,PO | SO | [ |
LVF | CuO/MnFe2O4 | 降解率91.3% | SO | [ | |
LMF | CuFe2O4/Bi2O3 | 降解率77.19%,Cu(Ⅰ)/Cu(Ⅱ)/Cu(Ⅲ)、Fe(Ⅱ)/Fe(Ⅲ)和Bi(Ⅲ)/Bi(Ⅴ)的价态转化为PS活化的关键 | SO | [ | |
TC | ZrO2/MnFe2O4 | Fe/Zr(摩尔比)=10,CPDS=6mmol/L, | 降解率85.2%,无机离子对TC降解的抑制排序:H2PO | SO | [ |
TC | NiCo2O4 | CTC=10mg/L,CPS=250mg/L, | 降解率81.1%,协同活化作用来源于Ni3+/Ni2+和Co3+/Co2+之间的价态转变 | SO | [ |
TC | γ-Fe2O3/CeO2 | CTC=20mg/L, | 降解率84%,PS和γ-Fe2O3/CeO2的协同指数达72.2%,降解路径包括羟基化、脱甲基、脱碳、脱羟基、C—N断裂、开环 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH | CuFe2O4 | CTCH=50mg/L, | 降解率93% | SO | [ |
TC | Ag0.4-BiFeO3 | CTC=10mg/L, | 降解率91%,反应速率常数0.0338min-1,pH对降解率影响很小 | SO | [ |
SDZ | Fe3O4@CuO x (FCHS) | CSDZ=5mg/L,pH=7,CFCHS=0.2g/L,CPS=2mmol/L,t=200min | 降解率95%,Fe(Ⅲ)与Cu(Ⅰ)氧化还原反应产生的Fe(Ⅱ)为活化PS的主要活性位点,PO | SO | [ |
LVF | CuO/MnFe2O4 | 降解率91.3% | SO | [ | |
LMF | CuFe2O4/Bi2O3 | 降解率77.19%,Cu(Ⅰ)/Cu(Ⅱ)/Cu(Ⅲ)、Fe(Ⅱ)/Fe(Ⅲ)和Bi(Ⅲ)/Bi(Ⅴ)的价态转化为PS活化的关键 | SO | [ | |
TC | ZrO2/MnFe2O4 | Fe/Zr(摩尔比)=10,CPDS=6mmol/L, | 降解率85.2%,无机离子对TC降解的抑制排序:H2PO | SO | [ |
TC | NiCo2O4 | CTC=10mg/L,CPS=250mg/L, | 降解率81.1%,协同活化作用来源于Ni3+/Ni2+和Co3+/Co2+之间的价态转变 | SO | [ |
TC | γ-Fe2O3/CeO2 | CTC=20mg/L, | 降解率84%,PS和γ-Fe2O3/CeO2的协同指数达72.2%,降解路径包括羟基化、脱甲基、脱碳、脱羟基、C—N断裂、开环 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | CA/GO | CA/GO=10∶1(质量比),CCA/GO=0.75g/L,CPS=10g/L,CTC=80g/L,pH=2,t=48h | 降解率>98%;催化剂循环使用4次,降解率仍为85%左右 | [ | |
TC | rGO-Co3O4 | CTC=5mg/L,CPS=0.3mmol/L,=200mg/L,pH=6,t=60min | 降解率96%,速率常数0.023min-1,催化剂循环使用3次,降解率仍大于84% | SO | [ |
LMF | AC@CoFe-LDH | AC/CoFe-LDH(质量比)=1∶2,CAC@CoFe-LDH=0.2g/L,CLMF=5mg/L,CPS=1g/L,pH=5,T=25℃,t=60min | 降解率93.2%,降解作用主要来源Fe(Ⅱ)/ Fe(Ⅲ)和Co(Ⅱ)/Co(Ⅲ)的快速转化、活性炭上sp2 C和氧化官能团对PS的活化以及非自由基路径的降解 | SO | [ |
CIP | Fe@BC | 最优条件:CCIP=20mg/L,CFe@BC=0.1g/L,CPS=0.5mmol/L,T=25℃,pH=5 | 降解率90.78%(120min内),HCO | SO | [ |
TC | Fe-NPC | CTC=20mg/L,CFe-NPC=0.2g/L,CPS=1mmol/L,t=100min | 降解率82.84% | SO | [ |
NOR | BC@nZVI/Ni | nZVI/Ni∶BC(质量比)=1∶5,CBC@nZVI/Ni=0.2g/L,CNOR=10mg/L,CPS=0.4mmol/L,T=30℃,pH=3,t=30min | 降解率99.3%,反应速率常数:0.6712min-1,降解途径包括脱碳、脱氟、哌嗪环断裂,Cl-和HCO | SO | [ |
SDZ | ZVI/BC | CSDZ=20mg/L,CPDS=2mmol/L,CZVI/BC=200mg/L,T=25℃,pH=3,t=10min | 降解率100%,反应速率常数0.6429min-1;高温、低pH、低Cl-浓度有利于SDZ的降解,CO | SO lO2(主导) | [ |
NOR | rGO-Fe3O4 | CNOR=20mg/L,=0.5g/L,CPS=1g/L,pH=6.47,T=18℃,t=75min | 降解率89.69%,TOC去除率45.69%;降解路径包括哌嗪基环转化、脱氟 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TC | CA/GO | CA/GO=10∶1(质量比),CCA/GO=0.75g/L,CPS=10g/L,CTC=80g/L,pH=2,t=48h | 降解率>98%;催化剂循环使用4次,降解率仍为85%左右 | [ | |
TC | rGO-Co3O4 | CTC=5mg/L,CPS=0.3mmol/L,=200mg/L,pH=6,t=60min | 降解率96%,速率常数0.023min-1,催化剂循环使用3次,降解率仍大于84% | SO | [ |
LMF | AC@CoFe-LDH | AC/CoFe-LDH(质量比)=1∶2,CAC@CoFe-LDH=0.2g/L,CLMF=5mg/L,CPS=1g/L,pH=5,T=25℃,t=60min | 降解率93.2%,降解作用主要来源Fe(Ⅱ)/ Fe(Ⅲ)和Co(Ⅱ)/Co(Ⅲ)的快速转化、活性炭上sp2 C和氧化官能团对PS的活化以及非自由基路径的降解 | SO | [ |
CIP | Fe@BC | 最优条件:CCIP=20mg/L,CFe@BC=0.1g/L,CPS=0.5mmol/L,T=25℃,pH=5 | 降解率90.78%(120min内),HCO | SO | [ |
TC | Fe-NPC | CTC=20mg/L,CFe-NPC=0.2g/L,CPS=1mmol/L,t=100min | 降解率82.84% | SO | [ |
NOR | BC@nZVI/Ni | nZVI/Ni∶BC(质量比)=1∶5,CBC@nZVI/Ni=0.2g/L,CNOR=10mg/L,CPS=0.4mmol/L,T=30℃,pH=3,t=30min | 降解率99.3%,反应速率常数:0.6712min-1,降解途径包括脱碳、脱氟、哌嗪环断裂,Cl-和HCO | SO | [ |
SDZ | ZVI/BC | CSDZ=20mg/L,CPDS=2mmol/L,CZVI/BC=200mg/L,T=25℃,pH=3,t=10min | 降解率100%,反应速率常数0.6429min-1;高温、低pH、低Cl-浓度有利于SDZ的降解,CO | SO lO2(主导) | [ |
NOR | rGO-Fe3O4 | CNOR=20mg/L,=0.5g/L,CPS=1g/L,pH=6.47,T=18℃,t=75min | 降解率89.69%,TOC去除率45.69%;降解路径包括哌嗪基环转化、脱氟 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SDZ、TC | 半焦 | CSDZ=CTC=10mg/L,CPS=0.75g/L,CSC=0.5g/L,T=30℃,pH=3,t=240min | 降解率97.8%(SDZ)、97.2%(TC);催化剂4次再生后的降解率84.5%(SDZ)和95.9%(TC) | SO | [ |
MTZ | 粒状活性炭 | CMTZ=100mg/L,nPS∶nMTZ=100∶1,CGAC=5g/L,pH=3.9,t=240min | PS分解率50%;降解率80%;COD去除率65% | [ | |
MTZ | 硝酸改性活性炭 | CMTZ=100mg/L,最优条件下反应 | 降解率87% | [ | |
SMX | 活性炭、生物炭 | CSMX=0.5mg/L,CPS=0.5mmol/L,C活性炭=C生物炭=0.1g/L,T=25℃,pH=7.2,t=150min | 降解率88.7%(活性炭)、91.2%(生物炭) | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SDZ、TC | 半焦 | CSDZ=CTC=10mg/L,CPS=0.75g/L,CSC=0.5g/L,T=30℃,pH=3,t=240min | 降解率97.8%(SDZ)、97.2%(TC);催化剂4次再生后的降解率84.5%(SDZ)和95.9%(TC) | SO | [ |
MTZ | 粒状活性炭 | CMTZ=100mg/L,nPS∶nMTZ=100∶1,CGAC=5g/L,pH=3.9,t=240min | PS分解率50%;降解率80%;COD去除率65% | [ | |
MTZ | 硝酸改性活性炭 | CMTZ=100mg/L,最优条件下反应 | 降解率87% | [ | |
SMX | 活性炭、生物炭 | CSMX=0.5mg/L,CPS=0.5mmol/L,C活性炭=C生物炭=0.1g/L,T=25℃,pH=7.2,t=150min | 降解率88.7%(活性炭)、91.2%(生物炭) | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
OFL | LBC、CBC | COFL=10mg/L,CPS=500mg/L,C生物炭=500g/L,t=300min | 高温下CBC+PS对OFL降解率较高,最高可达83%;降解率CBC-1000>CBC-500;LBC+PS对OFL降解率很低;生物炭缺陷结构主导活化PS产生O | lO2(主导)、SO | [ |
SMX | 咖啡渣生物炭 | CSMX=0.5mg/L,固有pH,CPS=1000mg/L,C生物炭=200mg/L, t=75min | 降解率接近100%(超纯水质);表观动力学常数随PS浓度线性增加,随生物炭浓度增大而增大;HCO | SO | [ |
SMX | 麦芽根生物炭 | CSMX=0.25mg/L,CPS=250mg/L,C生物炭=90mg/L,t=90min | 降解率94%,表观速率常数0.03min-1,PS与生物炭表面的功能基团相互作用产生反应自由基 | [ | |
TC | BRC | CTC=20mg/L,CBRC-800=1g/L,CPMS=4mmol/L,T=25℃,t=90min | 降解率97.9%,反应速率常数0.03017min-1;H2PO | lO2(主导)、SO | [ |
SDZ | MBC | CSDZ=40mg/L,CMBC=1g/L,CPS=1.5mmol/L,pH=5.16,t=60min | 降解率91.79%,矿化率60%,反应速率常数0.03093min-1;Cu2+增强SDZ的降解,PO | SO | [ |
TC | 玉米秸秆生物炭+Cu2+ | CTC=120mg/L,CPS=300mg/L,CBC700=0.5g/L, | 降解率72.6%,Cl-、NO | SO | [ |
CFX | Fe2O3@LBC | CCFX=10mg/L,C催化剂=0.4g/L,CPS=0.1g/L,未调节pH,T=30℃,t=200min | 降解率73.9%,反应速率常数0.0104min-1;催化剂的C—OH在降解过程中起关键作用,Fe3+/Fe2+的转化增强了CFX的降解;对CFX降解有抑制作用的阴离子有H2PO | SO | [ |
SMX | WGBC | CSMX=10mg/L,CWGBC=0.1g/L,CPS=0.1mmol/L,pH<11,t=120min | 降解率99%,石墨碳结构和C== O是WGBC对PS有高效活化能力的关键 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
OFL | LBC、CBC | COFL=10mg/L,CPS=500mg/L,C生物炭=500g/L,t=300min | 高温下CBC+PS对OFL降解率较高,最高可达83%;降解率CBC-1000>CBC-500;LBC+PS对OFL降解率很低;生物炭缺陷结构主导活化PS产生O | lO2(主导)、SO | [ |
SMX | 咖啡渣生物炭 | CSMX=0.5mg/L,固有pH,CPS=1000mg/L,C生物炭=200mg/L, t=75min | 降解率接近100%(超纯水质);表观动力学常数随PS浓度线性增加,随生物炭浓度增大而增大;HCO | SO | [ |
SMX | 麦芽根生物炭 | CSMX=0.25mg/L,CPS=250mg/L,C生物炭=90mg/L,t=90min | 降解率94%,表观速率常数0.03min-1,PS与生物炭表面的功能基团相互作用产生反应自由基 | [ | |
TC | BRC | CTC=20mg/L,CBRC-800=1g/L,CPMS=4mmol/L,T=25℃,t=90min | 降解率97.9%,反应速率常数0.03017min-1;H2PO | lO2(主导)、SO | [ |
SDZ | MBC | CSDZ=40mg/L,CMBC=1g/L,CPS=1.5mmol/L,pH=5.16,t=60min | 降解率91.79%,矿化率60%,反应速率常数0.03093min-1;Cu2+增强SDZ的降解,PO | SO | [ |
TC | 玉米秸秆生物炭+Cu2+ | CTC=120mg/L,CPS=300mg/L,CBC700=0.5g/L, | 降解率72.6%,Cl-、NO | SO | [ |
CFX | Fe2O3@LBC | CCFX=10mg/L,C催化剂=0.4g/L,CPS=0.1g/L,未调节pH,T=30℃,t=200min | 降解率73.9%,反应速率常数0.0104min-1;催化剂的C—OH在降解过程中起关键作用,Fe3+/Fe2+的转化增强了CFX的降解;对CFX降解有抑制作用的阴离子有H2PO | SO | [ |
SMX | WGBC | CSMX=10mg/L,CWGBC=0.1g/L,CPS=0.1mmol/L,pH<11,t=120min | 降解率99%,石墨碳结构和C== O是WGBC对PS有高效活化能力的关键 | SO | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SMX、CIP、磺胺间甲氧嘧啶 | N,S-共掺杂改性炭 | N/S原子比=8.06,C催化剂=0.2g/L,CPS=0.5mmol/L,C抗生素=20mg/L,未调节pH,t=120min | N,S-掺杂炭可活化PS高效降解SMX,活性位点为催化剂表面的吡啶型N、C—OH和噻吩S;SMX降解率接近100%,反应速率常数为0.03671min-1,矿化率为80%;pH=3~9时SMX的降解率较高;对环丙沙星、磺胺间甲氧嘧啶的降解率大于85% | lO2为主要活性氧化物种 | [ |
TC | N,Cu-共掺杂生物炭 | CTC=20mg/L,C催化剂=200mg/L,CPS=2mmol/L,pH=7,t=120min | 降解率100%,反应速率常数为0.0483min-1;N,Cu-掺杂可增强生物炭的催化活性,高浓度Cl-和HCO | OH·、电子转移 | [ |
TCH | N,S-共掺杂多孔炭(SNCs) | CTCH=0.02mmol/L,CPS=2mmol/L,CSNCs-700=0.4g/L,pH=3,t=60min | 降解率81.4%,,N,S-掺杂可使炭表面形成点缺陷产生lO2,羰基是促使电子转移的主要活性位点 | lO2、电子转移 | [ |
TC | N-掺杂生物炭(NBCX) | CTC=20mg/L,CPS=2mmol/L,CNBC-800=200mg/L,pH=7,t=120min | 降解率100%;N掺杂促使生物炭的石墨化结构形成,产生更多的活性位点;N含量和热解温度对催化剂的性能有重要影响 | 电子转移 | [ |
NOR | Fe,N-共掺杂生物炭 | CNOR=10mg/L,C催化剂=0.1g/L,CPS=5mmol/L,pH=7,T=25℃,t=40min | 降解率95%,反应速率常数0.208min-1;催化剂经5次循环使用后降解率和矿化率分别为80%和接近50% | OH·(主要自由基)、SO4-·、lO2(主要非自由基) | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
SMX、CIP、磺胺间甲氧嘧啶 | N,S-共掺杂改性炭 | N/S原子比=8.06,C催化剂=0.2g/L,CPS=0.5mmol/L,C抗生素=20mg/L,未调节pH,t=120min | N,S-掺杂炭可活化PS高效降解SMX,活性位点为催化剂表面的吡啶型N、C—OH和噻吩S;SMX降解率接近100%,反应速率常数为0.03671min-1,矿化率为80%;pH=3~9时SMX的降解率较高;对环丙沙星、磺胺间甲氧嘧啶的降解率大于85% | lO2为主要活性氧化物种 | [ |
TC | N,Cu-共掺杂生物炭 | CTC=20mg/L,C催化剂=200mg/L,CPS=2mmol/L,pH=7,t=120min | 降解率100%,反应速率常数为0.0483min-1;N,Cu-掺杂可增强生物炭的催化活性,高浓度Cl-和HCO | OH·、电子转移 | [ |
TCH | N,S-共掺杂多孔炭(SNCs) | CTCH=0.02mmol/L,CPS=2mmol/L,CSNCs-700=0.4g/L,pH=3,t=60min | 降解率81.4%,,N,S-掺杂可使炭表面形成点缺陷产生lO2,羰基是促使电子转移的主要活性位点 | lO2、电子转移 | [ |
TC | N-掺杂生物炭(NBCX) | CTC=20mg/L,CPS=2mmol/L,CNBC-800=200mg/L,pH=7,t=120min | 降解率100%;N掺杂促使生物炭的石墨化结构形成,产生更多的活性位点;N含量和热解温度对催化剂的性能有重要影响 | 电子转移 | [ |
NOR | Fe,N-共掺杂生物炭 | CNOR=10mg/L,C催化剂=0.1g/L,CPS=5mmol/L,pH=7,T=25℃,t=40min | 降解率95%,反应速率常数0.208min-1;催化剂经5次循环使用后降解率和矿化率分别为80%和接近50% | OH·(主要自由基)、SO4-·、lO2(主要非自由基) | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH、OTCH | 钴-有机框架材料 | CTCH=20mg/L,COTCH=20mg/L,C催化剂=0.2g/L,CPMS=2g/L,pH=5,T=35℃,t=90min | 降解率88.57%(TCH)、95.7%(OTCH) | SO | [ |
SMX | 铁-有机框架材料[Fe(Nic)、Fe(PyBDC)、Fe(PIP)] | CSMX=0.04mmol/L,CPS=2mmol/L,C催化剂=0.5g/L,环境pH,T=30℃,t=180min | SMX降解率>97%,PS分解率>77%;活化能力:Fe(Nic)>Fe(PyBDC)>Fe(PIP);MOFs表面结合的Fe(Ⅱ)是为PS和分子氧提供电子的主要活性位点;SMX的降解路径包括硝化、酰化、羟基化、偶联、键断裂、直接电子传递 | SO | [ |
TC | N掺杂双金属有机框架材料(FeCo/N-MOF) | CTC=50mg/L,CPS=5mmol/L,C催化剂=0.4g/L,pH=3~9,T=25℃,t=150min | 降解率99%;FeCo/N-MOF具有六面纺锤体晶型和多孔结构,Fe(Ⅲ)和Co(Ⅱ)为主要活性位点,吡咯N的存在可增强催化性能;HCO | O | [ |
抗生素 | 活化方式 | (较优)反应条件 | 降解和矿化 | 氧化物质 | 文献 |
---|---|---|---|---|---|
TCH、OTCH | 钴-有机框架材料 | CTCH=20mg/L,COTCH=20mg/L,C催化剂=0.2g/L,CPMS=2g/L,pH=5,T=35℃,t=90min | 降解率88.57%(TCH)、95.7%(OTCH) | SO | [ |
SMX | 铁-有机框架材料[Fe(Nic)、Fe(PyBDC)、Fe(PIP)] | CSMX=0.04mmol/L,CPS=2mmol/L,C催化剂=0.5g/L,环境pH,T=30℃,t=180min | SMX降解率>97%,PS分解率>77%;活化能力:Fe(Nic)>Fe(PyBDC)>Fe(PIP);MOFs表面结合的Fe(Ⅱ)是为PS和分子氧提供电子的主要活性位点;SMX的降解路径包括硝化、酰化、羟基化、偶联、键断裂、直接电子传递 | SO | [ |
TC | N掺杂双金属有机框架材料(FeCo/N-MOF) | CTC=50mg/L,CPS=5mmol/L,C催化剂=0.4g/L,pH=3~9,T=25℃,t=150min | 降解率99%;FeCo/N-MOF具有六面纺锤体晶型和多孔结构,Fe(Ⅲ)和Co(Ⅱ)为主要活性位点,吡咯N的存在可增强催化性能;HCO | O | [ |
1 | 杜立. 石墨化生物炭活化过硫酸盐去除水中磺胺甲𫫇唑的研究[D]. 长沙:湖南大学,2020. |
DU Li. The research on the removal of sulfamethoxazole from water via the activation of persulfate with graphitized biochar[D]. Changsha: Hunan University, 2020. | |
2 | 齐亚兵,张思敬,孟晓荣,等. 抗生素废水处理技术现状及研究进展[J]. 应用化工,2021, 50(9): 2587-2593, 2597. |
QI Yabing, ZHANG Sijing, MENG Xiaorong, et al. The present situation and research progress of antibiotic wastewater treatment technology[J]. Applied Chemical Industry, 2021, 50(9): 2587-2593, 2597. | |
3 | 杨梅. 热活化过硫酸盐降解四环素的机理及产物的生物毒性评价[J]. 重庆:重庆大学,2020. |
YANG Mei. Mechanism of tetracycline degrading by thermally activated persulfate and biotoxicity assessment of its intermediate products[D]. Chongqing: Chongqing University, 2020. | |
4 | 郑琴琴,闵中芳,李吉平,等. 活化过硫酸盐高级氧化技术降解水中抗生素的研究进展[J]. 化工环保,2021, 41(6): 678-687. |
ZHENG Qinqin, MIN Zhongfang, LI Jiping, et al. Research progresses on degradation of antibiotics in water by advanced oxidation with activated persulfate[J]. Environmental Protection of Chemical Industry, 2021, 41(6): 678-687. | |
5 | 王自忠,赵海谦,王秋实,等. 基于SR-AOPs 处理抗生素废水研究进展[J]. 工业用水与废水,2021, 52(5): 6-10. |
WANG Zizhong, ZHAO Haiqian, WANG Qiushi, et al. Research progress of antibiotic wastewater treatment based on SR-AOPs[J]. Industrial Water & Wastewater, 2021, 52(5): 6-10. | |
6 | 张凌星,肖鹏飞. 活化过硫酸盐氧化处理抗生素废水的研究进展[J]. 工业水处理,2021, 41(5): 29-35. |
ZHANG Lingxing, XIAO Pengfei. Research progress on treatment of antibiotic wastewater by activated persulfate oxidation[J]. Industrial Water Treatment, 2021, 41(5): 29-35. | |
7 | ZHOU R, LI T T, SU Y, et al. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms[J].Environmental Science and Pollution Research, 2018, 25: 2466-2475. |
8 | QIAN Y J, LIU X, LI K, et al. Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process[J]. Chemical Engineering Journal, 2020, 384: 123332. |
9 | JI Y F, FAN Y, LIU K, et al. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds[J].Water Research, 2015, 87: 1-9. |
10 | JI Y F, SHI Y Y, DONG W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution[J]. Chemical Engineering Journal, 2016, 298: 225-233. |
11 | LIU L, LIN S, ZHANG W, et al. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process[J]. Chemical Engineering Journal, 2018, 346: 515-524. |
12 | MILH H, SCHOENAERS B, STESMANS A, et al. Degradation of sulfamethoxazole by heat-activated persulfate oxidation: elucidation of the degradation mechanism and influence of process parameters[J]. Chemical Engineering Journal, 2020, 379: 122234. |
13 | LI H, YANG L, HE L Y, et al. Kinetics and mechanisms of chloramphenicol degradation in aqueous solutions using heat-assisted nZVI activation of persulfate[J]. Journal of Molecular Liquids, 2020, 313: 113511. |
14 | ZHOU T, DU J K, WANG Z J, et al. Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: kinetics, synergistic effect and reaction mechanism[J].Chemical Engineering Journal Advances, 2022, 9: 100200. |
15 | GAO Y, CONG S B, HE Y L, et al. Study on the mechanism of degradation of tetracycline hydrochloride by microwave-activated sodium persulfate[J]. Water Science and Technology, 2020, 82 (9):1961-1970. |
16 | 高玉. 微波辐射协同三维催化剂活化过硫酸盐降解喹诺酮类抗生素的机理研究[D]. 长春:吉林大学,2021. |
GAO Yu. The mechanism of microwave irradiation with three-dimensional catalysts activation of persulfate degrade quinolones antibiotics[D]. Changchun: Jilin University, 2021. | |
17 | LIU X Y, HUANG F, YU Y, et al. Ofloxacin degradation over Cu-Ce tyre carbon catalysts by the microwave assisted persulfate process[J]. Applied Catalysis B: Environmental, 2019, 253: 149-159. |
18 | YANG L, XUE J M, HE L Y, et al. Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: influences, mechanisms and prospective[J]. Chemical Engineering Journal, 2019, 378: 122146. |
19 | NASSERI S, MAHVI A H, SEYEDSALEHI M, et al. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix[J]. Journal of Molecular Liquids, 2017, 241: 704-714. |
20 | ZHOU T, ZOU X L, MAO J, et al. Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix[J]. Applied Catalysis B: Environmental, 2016, 185: 31-41. |
21 | SUN X K, QIN Y X, ZHOU W. Degradation of amoxicillin from water by ultrasound-zero-valent iron activated sodium persulfate[J]. Separation and Purification Technology, 2021, 275: 119080. |
22 | 程小莉. 基于不同自由基的超声催化降解环丙沙星的效果和机理研究[D]. 西安:西安理工大学,2016. |
CHENG Xiaoli. Effect and mechanism of ciprofloxacin degradation under ultrasonic catalytic system based on different free radicals[D]. Xi’an: Xi’an University of Technology, 2016. | |
23 | RAHMANI A R, REZAEI-VAHIDIAN H, ALMASI H, et al. Modeling and optimization of ciprofloxacin degradation by hybridized potassium persulfate/zero valent-zinc/ultrasonic process[J]. Environmental Processes, 2017, 4: 563-572. |
24 | RAJABI S, NASIRI A, HASHEMI M. Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation[J]. Chemosphere, 2022, 286: 131872. |
25 | 李珂,刘振鸿,钱雅洁,等. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性[J]. 环境工程学报, 2019, 13(1): 40-48. |
LI Ke, LIU Zhenhong, QIAN Yajie, et al. Cefalexin degradation by advanced oxidation process based on sulfate radical[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 40-48. | |
26 | GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water[J]. Chemical Engineering Journal, 2017, 317: 1012-1025. |
27 | GUO H G, KE T L, GAO N Y, et al. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation[J]. Chemical Engineering Journal, 2017, 316: 471-480. |
28 | SERNA-GALVIS E A, FERRARO F, SILVA-AGREDO J, et al. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes[J]. Water Research, 2017, 122: 128-138. |
29 | LI H, YANG Y L, LI X. Enhanced degradation mechanism of sulfamethazine by vacuum ultraviolet/persulfate[J].Journal of Environmental Chemical Engineering, 20201, 9: 106489. |
30 | WANG B Q, FU T, AN B H, et al. UV light-assisted persulfate activation by Cu0 -Cu2O for the degradation of sulfamerazine[J]. Separation and Purification Technology, 2020, 251: 117321. |
31 | DOU M M, WANG J, MA Z K, et al. Origins of selective differential oxidation of β-lactam antibiotics with different structure in an efficient visible-light driving mesoporous g-C3N4 activated persulfate synergistic mechanism[J]. Journal of Hazardous Materials, 2022, 426: 128111. |
32 | ZHU H Q, YANG B, YANG J J, et al. Persulfate-enhanced degradation of ciprofloxacin with SiC/g-C3N4 photocatalyst under visible light irradiation[J]. Chemosphere, 2021, 276: 130217. |
33 | 张信. N-CQDs/g-C3N4催化剂可见光下活化过硫酸盐降解废水中的四环素[D]. 长沙:湖南大学,2020. |
ZHANG Xin. Visible-light-driven activation of persulfate by N-CQDs/g-C3N4 catalysts for efficient tetracycline degradation[D]. Changsha: Hunan University, 2020. | |
34 | MACÍAS-VARGAS J A, CAMPOS-MAÑAS M C, AGÜERA A, et al. Enhanced activated persulfate oxidation of ciprofloxacin using a low-grade titanium ore under sunlight: influence of the irradiation source on its transformation products[J]. Environmental Science and Pollution Research, 2021, 28: 24008-24022. |
35 | LIU J L, ZHONG S, SONG Y P, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. |
36 | MALAKOOTIAN M, AHMADIAN M. Ciprofoxacin removal by electro-activated persulfate in aqueous solution using iron electrodes[J]. Applied Water Science, 2019, 9: 140. |
37 | NASHAT M, MOSSAD M, EL-ETRIBY H K, et al. Optimization of electrochemical activation of persulfate by BDD electrodes for rapid removal of sulfamethazine[J]. Chemosphere, 2022, 286: 131579. |
38 | FRONTISTIS Z, MANTZAVINOS D, MERIC S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation-sodium persulfate process[J]. Journal of Environmental Management, 2018, 223: 878-887. |
39 | ZHANG L L, DING W, QIU J T, et al. Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process[J]. Journal of Cleaner Production, 2018, 197: 297-305. |
40 | TANG S F, ZHAO M Z, YUAN D L, et al. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation[J]. Separation and Purification Technology, 2021, 255: 117690. |
41 | 张祺. 超声强化电活化过硫酸盐去除水中抗生素的研究[D]. 武汉:华中科技大学,2016. |
ZHANG Qi. Removal of antibiotics in aqueous solution using sonoelectro-activated persulfate system[D]. Wuhan: Huazhong University of Science & Technology, 2016. | |
42 | ZEGHIOUD H, NGUYEN-TRI P, KHEZAMI L, et al. Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes[J]. Journal of Water Process Engineering, 2020, 38: 101664. |
43 | TANG S F, YUAN D L, RAO Y, et al. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water[J]. Chemical Engineering Journal, 2018, 337: 446-454. |
44 | SHANG K F, MORENT R, WANG N, et al. Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/ persulfate: reactive species identification and their role in SMX degradation[J]. Chemical Engineering Journal, 2022, 431: 133916. |
45 | LIANG J P, ZHOU X F, ZHAO Z L, et al. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma[J]. Journal of Environmental Management, 2021, 278: 111539. |
46 | 卢建,邵子纯,夏文君,等. Fe0-Na2S2O8去除畜禽废水中磺胺二甲基嘧啶研究[J].水处理技术,2019, 45(5): 42-46. |
LU Jian, SHAO Zichun, XIA Wenjun, et al. Study on the removal of sulfamethazine in swine wastewater by Fe0-Na2S2O8 system[J]. Technology of Water Treatment, 2019, 45(5): 42-46. | |
47 | 余小玉,郭家华,孙建良. 工业废铁屑活化过硫酸盐降解水中环丙沙星的研究[J]. 环境污染与防治,2020, 42(8): 999-1004. |
YU Xiaoyu, GUO Jiahua, SUN Jianliang. Study on the degradation of ciprofloxacin in water by activated persulfate with industrial waste iron[J]. Environmental pollution & Control, 2020, 42(8): 999-1004. | |
48 | 车迪. 零价铁活化过硫酸盐降解水中磺胺嘧啶研究[D]. 吉林:东北电力大学,2018. |
CHE Di. Degradation of aquatic sulfadiazine by persulfate activated with zero valent iron[D]. Jilin: Northeast Electric Power University, 2018. | |
49 | GUO W Q, ZHAO Q, DU J S, et al. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: performance, mechanisms and degradation pathways[J]. Chemical Engineering Journal, 2020, 388: 124303. |
50 | MILH H, PESSEMIER J, CABOOTER D, et al. Removal of sulfamethoxazole by ferrous iron activation of persulfate: optimization of dosing strategy and degradation mechanism[J]. Science of the Total Environment, 2021, 799: 149159. |
51 | FAN J H, CAI Y, SHEN S H, et al. New insights into FeS/persulfate system for tetracycline elimination: iron valence, homogeneous-heterogeneous reactions and degradation pathways[J]. Journal of Environmental Science, 2022, 112: 48-58. |
52 | XU H D, SHENG Y Q. New insights into the degradation of chloramphenicol and fluoroquinolone antibiotics by peroxymonosulfate activated with FeS: performance and mechanism[J]. Chemical Engineering Journal, 2021, 414: 128823. |
53 | FU C, YI X L, LIU Y, et al. Cu2+ activated persulfate for sulfamethazine degradation[J]. Chemosphere, 2020, 257 :127294. |
54 | 李文倩. 硫化钴中空纳米球催化过一硫酸盐降解水中抗生素的效能与机理[D]. 重庆:重庆大学,2020. |
LI Wenqian. efficiency and mechanism of ciprofloxacin degradation by peroxymonosulfate/cobalt sulfide hollow nanospheres activation system[D]. Chongqing: Chongqing University, 2020. | |
55 | 王艳,张佳文,范行军,等. CuFe2O4活化过一硫酸盐降解四环素[J]. 功能材料,2020, 51(3): 3214-3220. |
WANG Yan, ZHANG Jiawen, FAN Xingjun, et al. Catalytic degradation of tetracycline hydrochloride by peroxymonosulfate activated with CuFe2O4 [J]. Journal of Functional Materials, 2020, 51(3): 3214-3220. | |
56 | OUYANG M Y, LI X M, XU Q X, et al. Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 566: 33-45. |
57 | LIU T, WU K, WANG M, et al. Performance and mechanisms of sulfadiazine removal using persulfate activated by Fe3O4@CuO x hollow spheres[J]. Chemosphere, 2021, 262: 127845. |
58 | MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levoflfloxacin by activation of persulfate[J]. Chemical Engineering Journal, 2019, 360: 848-860. |
59 | ZHANG H X, SONG Y Y, NENGZI L C, et al. Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation[J]. Chemical Engineering Journal, 2020, 379: 122362. |
60 | LIU Z M, GAO Z M, WU Q, et al. Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline [J]. Chemical Engineering Journal, 2021, 423: 130283. |
61 | WU Z B, LIANG Y S, ZOU D S, et al. Enhanced heterogeneous activation of persulfate by Ni x Co3– x O4 for oxidative degradation of tetracycline and bisphenol A[J]. Journal of Environmental Chemical Engineering, 2020, 8: 104451. |
62 | NIU L J, ZHANG G M, XIAN G, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156. |
63 | CUI M F, LI Y H, SUN Y, et al. Degradation of tetracycline in polluted wastewater by persulfate over copper alginate/graphene oxide composites[J]. Journal of Polymers and the Environment, 2021, 29: 2227-2235. |
64 | ANG V C, TRAN D T, PHAN A T, et al. Synergistic effect for the degradation of tetracycline by rGO-Co3O4 assisted persulfate activation[J]. Journal of Physics and Chemistry of Solids, 2021, 153: 110005. |
65 | MA Q L, NENGZI L C, LI B, et al. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of Lomefloxacin[J]. Separation and Purification Technology, 2020, 235: 116204. |
66 | DU Y F, DAI M, NAZ I, et al. Carbothermal reduction synthesis of zero-valent iron and its application as a persulfate activator for ciprofloxacin degradation[J]. Separation and Purification Technology, 2021, 275: 119201. |
67 | W X X, LI T, WANG R Z, et al. One-pot green synthesis of zero-valent iron particles supported on N-doped porous carbon for efficient removal of organic pollutants via persulfate activation: low iron leaching and degradation mechanism[J]. Separation and Purification Technology, 2021, 279: 119768. |
68 | ZHU F, WU Y Y, LIANG Y K, et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal, 2020, 389: 124276. |
69 | MA D M, YANG Y, LIU B F, et al. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation[J]. Chemical Engineering Journal, 2021, 408: 127992. |
70 | YIN F, WANG C, LIN K-Y A, et al. Persulfate activation for efficient degradation of norfloxacin by a rGO-Fe3O4 composite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 163-169. |
71 | 孙金龙, 张宇, 刘福跃, 等. 基于碳基催化剂活化过二硫酸盐降解有机污染物的研究进展[J]. 化工进展, 2021, 40(3): 1653-1666. |
SUN Jinlong, ZHANG Yu, LIU Fuyue, et al. Research progress in degradation of organic pollutants by activation of persulfates with carbon-based catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1653-1666. | |
72 | YU M, SUN C D, WANG L H, et al. Semi-coke activated persulfate promotes simultaneous degradation of sulfadiazine and tetracycline in a binary mixture[J]. Chemical Engineering Journal,2021, 416: 129122. |
73 | FOROUZESH M, EBADI A, AGHAEINEJAD-MEYBODI A. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator[J]. Separation and Purification Technology, 2019, 210: 145-151. |
74 | FOROUZESH M, EBADI A, AGHAEINEJAD-MEYBODI A, et al. Transformation of persulfate to free sulfate radical over granular activated carbon: effect of acidic oxygen functional groups[J]. Chemical Engineering Journal, 2019, 374: 965-974. |
75 | LIANG J, XU X Y, ZAMAN W Q, et al. Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: roles of radicals in solution or solid phase[J]. Chemical Engineering Journal, 2019, 375: 121908. |
76 | LI H, LIU Y, JIANG F, et al. Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar[J]. Science of the Total Environment, 2022, 806: 150968. |
77 | LYKOUDI A, FRONTISTIS Z, VAKROS J,et al. Degradation of sulfamethoxazole with persulfate using spent coffee grounds biochar as activator[J]. Journal of Environmental Management, 2020, 271: 111022. |
78 | KEMMOU L, FRONTISTIS Z, VAKROS J, et al. Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes[J]. Catalysis Today, 2018, 313: 128-133. |
79 | CUI Q T, ZHANG W, CHAI S Y, et al. The potential of green biochar generated from biogas residue as a heterogeneous persulfate activator and its non-radical degradation pathways: adsorption and degradation of tetracycline[J]. Environmental Research, 2022, 204: 112335. |
80 | DONG F X, YAN L, HUANG S T, et al. Removal of antibiotics sulfadiazine by a biochar based material activated persulfate oxidation system: performance, products and mechanism[J]. Process Safety and Environmental Protection, 2022, 157: 411-419. |
81 | CHEN J H, YU X L, LI C, et al. Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate[J]. Chemical Engineering Journal, 2020, 382 : 122916. |
82 | SONG H C, LI Q, YE Y X, et al. Degradation of cephalexin by persulfate activated with magnetic loofah biochar: performance and mechanism[J]. Separation and Purification Technology, 2021, 272: 118971. |
83 | SUN W, PANG K F, YE F, et al. Efficient persulfate activation catalyzed by pyridinic N, C—OH, and thiophene S on N,S-co-doped carbon for nonradical sulfamethoxazole degradation: identification of active sites and mechanisms[J]. Separation and Purification Technology, 2022, 284: 120197. |
84 | ZHONG Q F, LIN Q T, HUANG R L, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608. |
85 | HUO X W, ZHOU P, ZHANG J, et al. N, S-Doped porous carbons for persulfate activation to remove tetracycline: nonradical mechanism[J]. Journal of Hazardous Materials, 2020, 391: 122055. |
86 | ZHONG Q F, LIN Q T, HE W J, et al. Study on the nonradical pathways of nitrogen-doped biochar activating persulfate for tetracycline degradation[J]. Separation and Purification Technology, 2021, 276: 119354. |
87 | XI M F, CUI K P, CUI M Si, et al. Enhanced norfloxacin degradation by iron and nitrogen co-doped biochar: revealing the radical and nonradical co-dominant mechanism of persulfate activation[J]. Chemical Engineering Journal, 2021, 420: 129902. |
88 | 李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展[J]. 化工进展, 2019, 38(10): 4712-4721. |
LI Xiaojuan, LIAO Fengzhen, YE Lanmei, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721. | |
89 | 喻海彬. 钴-有机骨架材料活化过硫酸盐修复四环素类抗生素医疗废水[D]. 吉首:吉首大学,2019. |
YU Haibin. Cobalt-organic framework material activates persulfate to repair tetracycline antibiotic medical wastewater[D]. Jishou: Jishou University, 2019. | |
90 | PU M J, NIU J F, BRUSSEAU M L, et al. Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole[J]. Chemical Engineering Journal, 2020, 394: 125044. |
91 | ZHANG Y F, WEI J, XING L Y, et al. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation[J]. Separation and Purification Technology, 2022, 282: 120124. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[4] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[7] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[8] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[9] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[10] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[11] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[12] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[13] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[14] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[15] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |