Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6310-6318.DOI: 10.16085/j.issn.1000-6613.2022-0681
• Industrial catalysis • Previous Articles Next Articles
CUI Weiyi1,2(), DING Guomin3, TAN Naidi2()
Received:
2022-04-18
Revised:
2022-07-27
Online:
2022-12-29
Published:
2022-12-20
Contact:
TAN Naidi
通讯作者:
谭乃迪
作者简介:
崔维怡(1977—),女,副教授,研究方向为环境催化。E-mail:cuiweiyi0119@163.com。
基金资助:
CLC Number:
CUI Weiyi, DING Guomin, TAN Naidi. Research progress on titanium dioxide based catalysts for catalytic oxidation of formaldehyde[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6310-6318.
崔维怡, 丁国敏, 谭乃迪. 二氧化钛基催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2022, 41(12): 6310-6318.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0681
1 | HE Chi, CHENG Jie, ZHANG Xin, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119 (7): 4471-4568. |
2 | HUANG Haibao, XU Ying, FENG Qiuyu, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5: 2649-2669. |
3 | SALTHAMMER Tunga, MENTESE Sibel, MARUTZKY Rainer. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110: 2536-2572. |
4 | LIU Lumeng, LIU Junjie, ZENG Yonghong, et al. Formaldehyde adsorption in carbon nanopores—New insights from molecular simulation[J]. Chemical Engineering Journal, 2019, 370: 866-874. |
5 | DIAO Wenyu, CAI Hongyue, WANG Lu, et al. Efficient photocatalytic degradation of gas-phase formaldehyde by Pt/TiO2 nanowires in a continuous flow reactor[J]. ChemCatChem, 2020, 12 (21): 5420-5429. |
6 | VELLINGIRI Kowsalya, VIKRANT Kumar, KUMAR Vanish, et al. Advances in thermocatalytic and photocatalytic techniques for the room/low temperature oxidative removal of formaldehyde in air[J]. Chemical Engineering Journal, 2020, 399: 125759. |
7 | WAN Yajuan, FAN Xing, ZHU Tianle. Removal of low-concentration formaldehyde in air by DC corona discharge plasma[J]. Chemical Engineering Journal, 2011, 171(1): 314-319. |
8 | TORRES Jhonquiroz, ROYER Sébastien, BELLAT Jean-pierre, et al. Formaldehyde: catalytic oxidation as a promising soft way of elimination[J]. ChemSusChem, 2013, 6 (4): 578-592. |
9 | NIE Long Hui, YU Jia Guo, JARONIEC Mietek, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catalysis Science & Technology, 2016, 6 (11): 3649-3669. |
10 | BAI Bingyang, QIAO Qi, LI Junhua, et al. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, 2016, 37:102-122. |
11 | GUO Jiahong, LIN Chuxia, JIANG Chuanjia, et al. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Applied Surface Science, 2019, 475: 237-255. |
12 | YUSUF Abubakar, SNAPE Colin, HE Jun, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: a review[J]. Catalysis Reviews-Science and Engineering, 2017, 59 (3): 189-233. |
13 | MIAO Lei, WANG Jinlong, ZHANG Pengyi. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde[J]. Applied Surface Science, 2019, 466: 441-453. |
14 | ZHANG Changbin, HE Hong, TANAKA K. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature[J]. Catalysis Communications, 2005, 6: 211-214. |
15 | THOMPSON TL, YATES JT. Surface science studies of the photoactivation of TiO2-new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453. |
16 | HAUBRICH Jan, KAXIRAS Efthimions, FRIEND Cynthia M. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110) [J]. Chemistry-a European Journal, 2011, 17: 4496-4506. |
17 | LIU Huazhong, ZHAO Mingtian, LEI Yinkai, et al. Formaldehyde on TiO2 anatase (101): a DFT study[J]. Computational Materials Science, 2012, 51: 389-395. |
18 | LIU Huazhong, LIEW K M, PAN Chunxu. Influence of hydroxyl groups on the adsorption of HCHO on TiO2-B(100) surface by first-principles study[J]. Physical Chemistry Chemical Physics, 2013, 15: 3866-3880. |
19 | LIU Huazhong, WANG Xiao, PAN Chunxu, et al. First-principles study of formaldehyde adsorption on TiO2 rutile (110) and anatase (001) surfaces[J]. Journal of Physical Chemistry C, 2012, 116: 8044-8053. |
20 | 何运兵, 纪红兵. 温和条件下甲醛在 Pt/TiO2上催化氧化反应的原位漫反射红外光谱研究[J].催化学报,2010, 31:171-175. |
HE Yunbing, JI Hongbing. In-situ DRIFTS study on catalytic oxidation of formaldehyde over Pt/TiO2 under mild conditions[J]. Chinese Journal of Catalysis, 2010, 31: 171-175. | |
21 | HE Miao, JI Jian, LIU Biyuan, et al. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature[J]. Applied Surface Science, 2019, 473: 934-942. |
22 | ZENG Lei, SONG Wulin, LI Minghui, et al. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature[J]. Applied Catalysis B: Environmental, 2014,147: 490-498. |
23 | HUANG Yongchao, LI Haibao, BALOGUN Muhammad-Sadeeq, et al. Three-dimensional TiO2/CeO2 nanowire composite for efficient formaldehyde oxidation at low temperature[J]. RSC Advances, 2015, 5: 7729-7733. |
24 | ZHANG Changbin, LIU Fudong, ZHAI Yanping, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie International Edition, 2012, 51: 9628-9632. |
25 | NIE Longhui, YU Jiaguo, LI Xinyang, et al. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde[J]. Environmental Science Technology, 2013, 47: 2777-2783. |
26 | QI Lifang, CHENG Bei, YU Jiaguo, et al. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. Journal of Hazardous Materials, 2016, 301: 522-530. |
27 | CHEN Huayao, RUI Zebao, JI Hongbing. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53: 7629-7636. |
28 | CUI Weiyi, XUE Dan, YUAN Xiaoling, et al. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions[J]. Applied Surface Science, 2017, 411: 105-112. |
29 | XU Feiyan, LE Yao, CHENG Bei, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426: 333-341. |
30 | SU Yuan, JI Keming, XUN Jiayao, et al. Catalytic oxidation of low concentration formaldehyde over Pt/ TiO2 catalyst[J]. Chinese Journal of Chemical Engineering, 2021, 29: 190-195. |
31 | AHMAD Waleed, PARK Eunseuk, LEE Heehyeon, et al. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation[J]. Applied Surface Science, 2021, 538: 147504. |
32 | SUN Shaodi, WU Xiaomin, HUANG Zhiwei, et al. Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation[J]. Chemical Engineering Journal, 2022, 435: 135035. |
33 | CHEN Huayao, TANG Minni, RUI Zebao, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 8900-8907. |
34 | PENG Honggen, YING Jiawei, ZHANG Jingyan, et al. La‐doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO[J]. Chinese Journal of Catalysis, 2017, 38: 39-47. |
35 | SHI Yuanyuan, QIAO Zhiwei, LIU Zili, et al. Cerium doped Pt/TiO2 for catalytic oxidation of low concentration formaldehyde at room temperature[J]. Catalysis Letters, 2019, 149: 1319-1325. |
36 | CHEN Jin, JIANG Mingzhu, XU Wenjian, et al. Incorporating Mn cation as anchor to atomically disperse Pt on TiO2 for low temperature removal of formaldehyde[J]. Applied Catalysis B: Environmental, 2019, 259: 118013. |
37 | ZHU Silong, ZHENG Jianfei, XIN Sitian, et al. Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration[J]. Chemical Engineering Journal, 2022, 427: 130951. |
38 | NIE Longhui, WANG Jie, YU Jiaguo. Preparation of a Pt/TiO2/cotton fiber composite catalyst with low air resistance for efficient formaldehyde oxidation at room temperature[J]. RSC Advances, 2017, 7: 21389-21397. |
39 | LIU Wei, GONG Yutao, LI Xueping, et al. A TiO2/C catalyst having biomimetic channels and extremely low Pt loading for formaldehyde oxidation[J]. RSC Advances, 2019, 9: 3965-3971. |
40 | ZHANG Changbin, LI Yaobin, WANG Yafei, et al. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature[J]. Environmental Science Technology, 2014, 48: 5816-5822. |
41 | LI Yaobin, WANG Chunying, ZHANG Changbin, et al. Formaldehyde oxidation on Pd/TiO2 catalysts at room temperature: the effects of surface oxygen vacancies[J]. Topics in Catalysis, 2020, 63: 810-816. |
42 | WANG Chunying, LI Yaobin, ZHANG Changbin, et al. A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: the roles of surface defects[J]. Applied Catalysis B: Environmental, 2021, 282: 119540. |
43 | WANG Xuyu, RUI Zebao, ZENG Yingqing, et al. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO2(101) and formaldehyde: a density functional theory study[J]. Catalysis Today, 2017, 297: 151-158. |
44 | Y C Leung DENNIS, FU Xiaoliang, YE Daiqi, et al. Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation[J]. Kinetics and Catalysis, 2012, 53(2): 239-246. |
45 | LI Yaobin, CHEN Xueyan, WANG Chunying, et al. Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature[J]. ACS Catalysis. 2018, 8: 11377-11385. |
46 | FANG Ruimei, HE Miao, HUANG Haibao, et al. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature[J]. Chemosphere, 2018, 213: 235-243. |
47 | BAO Wen, WANG Nan, HE Zhanhang. Ag@Fe-TiO2 catalysts for catalytic oxidation of formaldehyde indoor: a further improvement of Fe-TiO2 [J]. Research on Chemical Intermediates, 2021, 47: 3005-3023. |
48 | ZHANG Changbin, HE Hong, TANAKA Ken-ichi. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B: Environmental, 2006, 65: 37-43. |
49 | DING Junyan, YANG Yingju, LIU Jing, et al. Catalytic reaction mechanism of formaldehyde oxidation by oxygen species over Pt/TiO2 catalyst[J]. Chemosphere, 2020, 248: 12598. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[14] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |