Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6302-6309.DOI: 10.16085/j.issn.1000-6613.2022-0274
• Energy processes and technology • Previous Articles Next Articles
LI Dong1,2(), SHI Yu1,2, ZHANG Liang1,2(
), LI Jun1,2, FU Qian1,2, ZHU Xun1,2, LIAO Qiang1,2
Received:
2022-02-23
Revised:
2022-04-26
Online:
2022-12-29
Published:
2022-12-20
Contact:
ZHANG Liang
李洞1,2(), 石雨1,2, 张亮1,2(
), 李俊1,2, 付乾1,2, 朱恂1,2, 廖强1,2
通讯作者:
张亮
作者简介:
李洞(1998—),男,硕士研究生,研究方向为电化学能源转化。E-mail:20173242@cqu.edu.cn。
基金资助:
CLC Number:
LI Dong, SHI Yu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of thermal regenerative batteries with organic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6302-6309.
李洞, 石雨, 张亮, 李俊, 付乾, 朱恂, 廖强. 采用有机溶剂的热再生电池性能[J]. 化工进展, 2022, 41(12): 6302-6309.
1 | BROGIOLI D, LA MANTIA F, YIP N Y. Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies[J]. Renewable Energy, 2019, 133: 1034-1045. |
2 | 李艳, 连红奎, 顾春伟. 有机朗肯循环系统及其透平设计研究[J]. 工程热物理学报, 2010, 31(12): 2014-2018. |
LI Yan, LIAN Hongkui, GU Chunwei. Design and study of organic Rankine cycle(ORC) and turbine for ORC[J]. Journal of Engineering Thermophysics, 2010, 31(12): 2014-2018. | |
3 | 陈光辉, 李升大, 陶少辉, 等. 焦炉余热综合利用研究进展[J]. 化工进展, 2018, 37(10): 3799-3805. |
CHEN Guanghui, LI Shengda, TAO Shaohui, et al. Application and research of process of comprehensive utilization of coke oven waste heat[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3799-3805. | |
4 | 魏茂林, 付林, 赵玺灵, 等. 燃煤烟气余热回收与减排一体化系统应用研究[J]. 工程热物理学报, 2017, 38(6): 1157-1165. |
WEI Maolin, FU Lin, ZHAO Xiling, et al. Coal-fired boiler flue gas heat recovery system and its performance study[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1157-1165. | |
5 | LU Hongyou, PRICE Lynn, ZHANG Qi. Capturing the invisible resource: analysis of waste heat potential in Chinese industry[J]. Applied Energy, 2016, 161: 497-511. |
6 | WOOLLEY Elliot, LUO Yang, SIMEONE Alessandro. Industrial waste heat recovery: a systematic approach[J]. Sustainable Energy Technologies and Assessments, 2018, 29: 50-59. |
7 | ABRAHAM T J, MACFARLANE D R, BAUGHMAN R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy[J]. Electrochimica Acta, 2013, 113: 87-93. |
8 | DUPONT M F, MACFARLANE D R, PRINGLE J M, et al. Thermo-electrochemical cells for waste heat harvesting-progress and perspectives[J].Chemical Communications, 2017, 53(47): 6288-6302. |
9 | ABDOLLAHIPOUR Armin, SAYYAADI Hoseyn. Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles[J]. Energy, 2021, 227: 120489 |
10 | LONG Rui, LI Baode, LIU Zhichun, et al. Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat[J]. Energy, 2015, 87: 463-469. |
11 | TUFA RAMATO ASHU, SYLWIN PAWLOWSKI, JOOST VEERMAN, et al. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage[J]. Applied Energy, 2018, 225: 290-331. |
12 | 刘羊九, 王云山, 韩吉田, 等. 膜蒸馏技术研究及应用进展[J]. 化工进展, 2018, 37(10): 3726-3736. |
LIU Yangjiu, WANG Yunshan, HAN Jitian, et al. State-of-the-arts review of research and application progress for membrane distillation technology[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3726-3736. | |
13 | OLKIS C, SANTORI G, BRANDANI S. An adsorption reverse electrodialysis system for the generation of electricity from low grade heat[J]. Applied Energy, 2018, 231: 222-234. |
14 | 王治红, 丁晓明, 吴明鸥, 等. 有机朗肯循环在多品位余热发电中的应用[J]. 化工进展, 2019, 38(5): 2189-2196. |
WANG Zhihong, DING Xiaoming, WU Ming’ou, et al. Application of organic Rankine cycle in multi-grade waste heat power generation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2189-2196. | |
15 | CHEN Pengyu, ZHANG Liang, SHI Yu, et al. Biomass waste-derived hierarchical porous composite electrodes for high-performance thermally regenerative ammonia-based batteries[J]. Journal of Power Sources, 2022, 517: 230719. |
16 | RAHIMI Mohammad, SCHOENER Zachary, ZHU Xiuping, et al. Removal of copper from water using a thermally regenerative electrodeposition battery[J]. Journal of Hazardous Materials, 2017, 322: 551-556. |
17 | MOHAMMAD RAHIMI, STRAUB ANTHONY P, ZHANG FANG, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity[J]. Energy & Environmental Sciences, 2018, 11(2): 276-285. |
18 | ZHANG Fang, LIU Jia, YANG Wulin, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy & Environmental Sciences, 2015, 8(1): 343-349. |
19 | ZHANG Fang, LABARGE Nicole, YANG Wulin, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048. |
20 | ZHU XIUPING, MOHAMMAD RAHIMI, GORSKI CHRISTOPHER A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879. |
21 | ZHANG Liang, LI Yanxiang, ZHU Xun, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415. |
22 | 李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 668-671. |
LI Yanxiang, ZHANG Liang, ZHU Xun, et al. Effect of mass transfer on the performance of membrane electrode assembly typed thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671. | |
23 | 唐志强, 石雨, 张亮, 等. 不同基底材料复合电极对热再生氨电池产电性能的影响[J].化工学报,2021,72(3):1667-1674. |
TANG Zhiqiang, SHI Yu, ZHANG Liang, et al. Effects of composite electrodes with different substrate materials on electricity generation of thermal regenerative ammonia-based batteries[J]. CIESC Journal, 2021, 72(3): 1667-1674. | |
24 | LU Zhiqiang, ZHANG Yongsheng, ZHANG Liang, et al. Performance of a thermally regenerative ammonia-based battery using gradient-porous copper foam electrodes[J]. Science China Technological Sciences, 2021, 64(4): 696-704. |
25 | SHI Yu, ZHANG Liang, ZHANG Yongsheng, et al. Construction of a hierarchical porous surface composite electrode by dynamic hydrogen bubble template electrodeposition for ultrahigh-performance thermally regenerative ammonia-based batteries[J]. Chemical Engineering Journal, 2021, 423: 130339. |
26 | CHAKRABARTI M H, DRYFE R, ROBERTS E. Organic electrolytes for redox flow batteries[J]. Journal of the Chemical Society of Pakistan, 2007, 29(4): 294-300. |
27 | SENNE John K, KRATOCHVIL Byron. Standard potential of the copper(Ⅱ)-(Ⅰ) couple in acetonitrile[J]. Analytical Chemistry, 1972, 44(3): 585-588. |
28 | 马强, 赵丽娟, 徐谦, 等. 非水系液流电池多孔电极内反应传输过程模拟[J]. 工程热物理学报, 2020, 41(7): 1776-1783. |
MA Qiang, ZHAO Lijuan, XU Qian, et al. Simulation of reactive transfer process in porous electrode of non-aqueous redox flow battery[J]. Journal of Engineering Thermophysics, 2020, 41(7): 1776-1783. | |
29 | CHEN SHAW H. WEI SIMON K. Modification of the Stokes-Einstein equation with a semiempirical microfriction factor for correlation of tracer diffusivities in organic solvents[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12304-12310. |
30 | GONG Ke, FANG Qianrong, GU Shuang, et al. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs[J]. Energy & Environmental Science, 2015, 8(12): 3515-3530. |
31 | MOHAMMAD RAHIMI, ZHU LIANG, KOWALSKI KELLY L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963. |
32 | PALAKKAL VARADA MENON, NGUYEN THU, PHUC NGUYEN, et al. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings[J]. ACS Applied Energy Materials, 2020, 3(5): 4787-4798. |
33 | MOHAMMAD RAHIMI, ADRIANA D’ANGELO, GORSKI CHRISTOPHER A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50. |
34 | 张永胜, 张亮, 李俊, 等. 采用泡沫铜电极的热再生氨电池性能数值模拟[J]. 化工学报, 2020, 71(8): 3770-3779 |
ZHANG Yongsheng, ZHANG Liang, LI Jun, et al. Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode[J]. CIESC Journal, 2020, 718: 3770-3779. | |
35 | ZHANG Yongsheng, ZHANG Liang, LI Jun, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: effect of reactor and electrode design[J]. Electrochimica Acta, 2020, 331: 135422. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[7] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[8] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[9] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[12] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[13] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[14] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[15] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 300
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |