Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5870-5878.DOI: 10.16085/j.issn.1000-6613.2022-0026
• Industrial catalysis • Previous Articles Next Articles
LIU Ruiqin1(), MENG Fanhui1(), WANG Liyan2, ZHANG Peng1, ZHANG Junfeng2, TAN Yisheng2, LI Zhong1()
Received:
2022-01-05
Revised:
2022-03-10
Online:
2022-11-28
Published:
2022-11-25
Contact:
MENG Fanhui, LI Zhong
刘瑞琴1(), 孟凡会1(), 王立言2, 张鹏1, 张俊峰2, 谭猗生2, 李忠1()
通讯作者:
孟凡会,李忠
作者简介:
刘瑞琴(1995—),女,硕士研究生,研究方向为合成气催化转化。E-mail: liuruiqin333@163.com。
基金资助:
CLC Number:
LIU Ruiqin, MENG Fanhui, WANG Liyan, ZHANG Peng, ZHANG Junfeng, TAN Yisheng, LI Zhong. Preparation of ordered mesoporous CuCoZr catalyst and its catalytic performance for syngas to ethanol and higher alcohols[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5870-5878.
刘瑞琴, 孟凡会, 王立言, 张鹏, 张俊峰, 谭猗生, 李忠. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0026
催化剂 | 比表面积①/m2·g-1 | 孔容②/cm3·g-1 | 孔径③/nm | Cu平均晶粒尺寸④/nm |
---|---|---|---|---|
CuZr | 109 | 0.11 | 3.9 | 15.3 |
Cu4Co1Zr | 121 | 0.12 | 3.5 | — |
Cu3Co1Zr | 143 | 0.17 | 5.9 | 9.1 |
Cu1Co2Zr | 106 | 0.12 | 5.1 | — |
CoZr | 93 | 0.11 | 4.8 | — |
CuCoZr-CP | 51 | 0.04 | 2.8 | 11.8 |
催化剂 | 比表面积①/m2·g-1 | 孔容②/cm3·g-1 | 孔径③/nm | Cu平均晶粒尺寸④/nm |
---|---|---|---|---|
CuZr | 109 | 0.11 | 3.9 | 15.3 |
Cu4Co1Zr | 121 | 0.12 | 3.5 | — |
Cu3Co1Zr | 143 | 0.17 | 5.9 | 9.1 |
Cu1Co2Zr | 106 | 0.12 | 5.1 | — |
CoZr | 93 | 0.11 | 4.8 | — |
CuCoZr-CP | 51 | 0.04 | 2.8 | 11.8 |
催化剂 | CO转化率/% | 选择性(C物质的量分数)/% | 醇分布(C物质的量分数)/% | 醇时空收率/mg·gcat-1·h-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | C2+H | DME | ROH | MeOH | EtOH | PrOH | BuOH | C5+OH | ROH | C2+OH | ||||
CuZr | 24.8 | 9.7 | 21.4 | 4.9 | 3.0 | 61.0 | 96.9 | 0.9 | 0.8 | 1.1 | 0.3 | 186.1 | 25.7 | ||
Cu4Co1Zr | 52.1 | 32.6 | 27.7 | 24.4 | 0.8 | 14.5 | 55.5 | 24.0 | 10.8 | 7.6 | 2.1 | 92.7 | 41.2 | ||
Cu3Co1Zr | 74.9 | 38.9 | 5.4 | 33.6 | 3.7 | 18.4 | 45.1 | 31.0 | 11.5 | 8.7 | 3.7 | 137.0 | 75.2 | ||
Cu1Co2Zr | 99.0 | 41.8 | 8.1 | 43.6 | 0.4 | 6.2 | 24.3 | 31.9 | 25.8 | 13.0 | 5.0 | 57.0 | 35.5 | ||
CoZr | 97.3 | 37.7 | 2.3 | 48.5 | 7.0 | 4.5 | 37.7 | 8.6 | 24.3 | 29.1 | 0.3 | 42.8 | 25.7 | ||
CuCoZr-CP | 31.5 | 28.2 | 44.7 | 10.5 | 0.8 | 15.8 | 56.3 | 28.2 | 9.7 | 5.7 | 0.1 | 49.8 | 21.7 |
催化剂 | CO转化率/% | 选择性(C物质的量分数)/% | 醇分布(C物质的量分数)/% | 醇时空收率/mg·gcat-1·h-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | C2+H | DME | ROH | MeOH | EtOH | PrOH | BuOH | C5+OH | ROH | C2+OH | ||||
CuZr | 24.8 | 9.7 | 21.4 | 4.9 | 3.0 | 61.0 | 96.9 | 0.9 | 0.8 | 1.1 | 0.3 | 186.1 | 25.7 | ||
Cu4Co1Zr | 52.1 | 32.6 | 27.7 | 24.4 | 0.8 | 14.5 | 55.5 | 24.0 | 10.8 | 7.6 | 2.1 | 92.7 | 41.2 | ||
Cu3Co1Zr | 74.9 | 38.9 | 5.4 | 33.6 | 3.7 | 18.4 | 45.1 | 31.0 | 11.5 | 8.7 | 3.7 | 137.0 | 75.2 | ||
Cu1Co2Zr | 99.0 | 41.8 | 8.1 | 43.6 | 0.4 | 6.2 | 24.3 | 31.9 | 25.8 | 13.0 | 5.0 | 57.0 | 35.5 | ||
CoZr | 97.3 | 37.7 | 2.3 | 48.5 | 7.0 | 4.5 | 37.7 | 8.6 | 24.3 | 29.1 | 0.3 | 42.8 | 25.7 | ||
CuCoZr-CP | 31.5 | 28.2 | 44.7 | 10.5 | 0.8 | 15.8 | 56.3 | 28.2 | 9.7 | 5.7 | 0.1 | 49.8 | 21.7 |
1 | ATALLA Tarek, GUALDI Silvio, LANZA Alessandro. A global degree days database for energy-related applications[J]. Energy, 2018, 143: 1048-1055. |
2 | XUE Xiaoxiao, WENG Yujing, YANG Shicheng, et al. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas[J]. RSC Advances, 2021, 11(11): 6163-6172. |
3 | LIU Yongjun, DENG Xuan, HAN Peide, et al. Higher alcohols synthesis from syngas over P-promoted non-noble metal Cu-based catalyst[J]. Fuel, 2017, 208: 423-429. |
4 | SUN K, LIU Z, SONG S, et al. Effect of hydroxyl groups on CuCoMg nanosheets for ethanol and higher alcohol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2388-2399. |
5 | KHAN Wasim U, BAHARUDIN Luqmanulhakim, CHOI Jungkyu, et al. Recent progress in CO hydrogenation over bimetallic catalysts for higher alcohol synthesis[J]. ChemCatChem, 2021, 13(1): 111-120. |
6 | AO Min, PHAM Gia Hung, SUNARSO Jaka, et al. Active centers of catalysts for higher alcohol synthesis from syngas: a review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
7 | LIU Guoqing, FANG Huihuang, WANG Gang, et al. Dispersion of Rh-W x C nanocomposites on carbon nanotubes by one-pot carburization for synthesis of higher alcohols from syngas[J]. Fuel, 2021, 305: 121533. |
8 | ZHONG H, WANG Jiaming, GUO Shaoxia, et al. Mutual tailored bimetallic Rh-Co supported on La modified SiO2 for direct ethanol synthesis from syngas[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2631-2643. |
9 | SURISETTY Venkateswara Rao, DALAI Ajay Kumar, KOZINSKI Janusz. Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs[J]. Applied Catalysis A: General, 2010, 385(1/2): 153-162. |
10 | ASLAM Waqas, BELTRAMINI Jorge N, ATANDA Luqman A, et al. The catalytic activity of KMoCo carbon spheres for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2020, 605: 117803. |
11 | GAO Xiaofeng, WU Yingquan, ZHANG Tao, et al. Binary ZnO/Zn-Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas[J]. Catalysis Science & Technology, 2018, 8(11): 2975-2986. |
12 | LIU Yongjun, CUI Nan, JIA Penglong, et al. Synergy between active sites of ternary CuZnAlOOH catalysts in CO hydrogenation to ethanol and higher alcohols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6634-6646. |
13 | SUN Kai, TAN Minghui, BAI Yunxing, et al. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols[J]. Journal of Catalysis, 2019, 378: 1-16. |
14 | WANG Peng, ZHANG Junfeng, BAI Yunxing, et al. Ternary copper-cobalt-cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation[J]. Applied Catalysis A: General, 2016, 514: 14-23. |
15 | HE Shun, WANG Wei, SHEN Zheng, et al. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Molecular Catalysis, 2019, 479: 110610. |
16 | WANG Xiuyun, WEN Wu, SU Yanqing, et al. Influence of transition metals (M = Co, Fe and Mn) on ordered mesoporous CuM/CeO2 catalysts and applications in selective catalytic reduction of NO x with H2 [J]. RSC Advances, 2015, 5(77): 63135-63141. |
17 | SU Junjie, ZHANG Zhengpai, FU Donglong, et al. Higher alcohols synthesis from syngas over CoCu/SiO2 catalysts: dynamic structure and the role of Cu[J]. Journal of Catalysis, 2016, 336: 94-106. |
18 | SUN Kai, GAO Xiaofeng, BAI Yunxing, et al. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catalysis Science & Technology, 2018, 8(15): 3936-3947. |
19 | HUANG Chao, MA Peiyu, WANG Ruyang, et al. CuCo alloy nanonets derived from CuCo2O4 spinel oxides for higher alcohols synthesis from syngas[J]. Catalysis Science & Technology, 2021, 11(23): 7617-7623. |
20 | PRIETO Gonzalo, BEIJER Steven, SMITH Miranda L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie International Edition, 2014, 53(25): 6397-6401. |
21 | Dong LYU, ZHU Yan, SUN Yuhan. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO[J]. Chinese Journal of Catalysis, 2013, 34(11): 1998-2003. |
22 | WANG Zi, SPIVEY James J. Effect of ZrO2, Al2O3 and La2O3 on cobalt-copper catalysts for higher alcohols synthesis[J]. Applied Catalysis A: General, 2015, 507: 75-81. |
23 | LI Zhuoshi, ZENG Zhuang, YAO Dawei, et al. High-performance CoCu catalyst encapsulated in KIT-6 for higher alcohol synthesis from syngas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 200-209. |
24 | DEINEGA I V, L Yu DOLGYKH, STOLYARCHUK I L, et al. Catalytic properties of M-Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol[J]. Theoretical and Experimental Chemistry, 2013, 48(6): 386-393. |
25 | HUANG Chao, ZHU Can, ZHANG Mingwei, et al. Direct conversion of syngas to higher alcohols over a CuCoAl/t-ZrO2 multifunctional catalyst[J]. ChemCatChem, 2021, 13(13): 3184-3197. |
26 | LIU Guilong, GENG Yuxia, PAN Dongming, et al. Bi-metal Cu-Co from LaCo1- x Cu x O3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology, 2014, 128: 289-296. |
27 | LIU Guilong, NIU Ting, CAO Ang, et al. The deactivation of Cu-Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas[J]. Fuel, 2016, 176: 1-10. |
28 | 黄文斌, 魏强, 周亚松. 均一介孔Al2O3劣质蜡油加氢脱氮催化剂研究进展[J]. 化工进展, 2020, 39(S2): 196-203. |
HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress of homogeneous mesoporous Al2O3 of hydrodenitrogenation catalyst for inferior gas oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 196-203. | |
29 | 曹正凯, 张霞, 段爱军. 有序介孔材料Al-FDU-12的合成及其加氢精制应用[J]. 化工进展, 2021, 40(3): 1449-1455. |
CAO Zhengkai, ZHANG Xia, DUAN Aijun. Synthesis of well ordered Al-FDU-12 mesoporous materials and their application in hydrogenation[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1449-1455. | |
30 | FU Zihao, ZHANG Guodong, TANG Zhicheng, et al. Preparation and application of ordered mesoporous metal oxide catalytic materials[J]. Catalysis Surveys from Asia, 2020, 24(1): 38-58. |
31 | 严润华, 蔡卫权, 卓俊琳, 等. 一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al2O3催化剂及其蒽醌加氢性能[J]. 化工进展, 2018, 37(3): 1014-1020. |
YAN Runhua, CAI Weiquan, ZHUO Junlin, et al. One-pot solvent evaporation induced self-assembly synthesis of Pd-Ba-Zn/γ-Al2O3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinone[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1014-1020. | |
32 | YUAN Quan, LI Lele, LU Shuliang, et al. Facile synthesis of Zr-based functional materials with highly ordered mesoporous structures[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4117-4124. |
33 | CAI Weiquan, YU Jiaguo, ANAND Chokkalingam, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chemistry of Materials, 2011, 23(5): 1147-1157. |
34 | YANG Jiaqian, GONG Nana, WANG Liyan, et al. Tuning the Cu+ species of Cu-based catalysts for direct synthesis of ethanol from syngas[J]. New Journal of Chemistry, 2021, 45(44): 20832-20839. |
35 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
36 | PEI Yongli, ZHAO Jinxian, SHI Ruina, et al. Hierarchical porous carbon-supported copper nanoparticles as an efficient catalyst for the dimethyl carbonate synthesis[J]. Catalysis Letters, 2019, 149(11): 3184-3193. |
37 | CHARY Komandur V R, SEELA Kothapalli Kalyana, SAGAR Guggilla Vidya, et al. Characterization and reactivity of niobia supported copper oxide catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(2): 658-663. |
38 | WANG Jingjuan, CHERNAVSKII Petr A, WANG Ye, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103: 1111-1122. |
39 | FIERRO G, JACONO M LO, INVERSI M, et al. TPR and XPS study of cobalt-copper mixed oxide catalysts: evidence of a strong Co-Cu interaction[J]. Topics in Catalysis, 2000, 10(1/2): 39-48. |
40 | TIEN THAO Nguyen, KIM HUYEN le Thi. Catalytic oxidation of styrene over Cu-doped hydrotalcites[J]. Chemical Engineering Journal, 2015, 279: 840-850. |
41 | Ho Ting LUK, MONDELLI Cecilia, FERRÉ Daniel Curulla, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
42 | SHA Feng, TANG Chizhou, TANG Shan, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2021, 404: 383-392. |
43 | RYCZKOWSKI Robert, Marcin JĘDRZEJCZYK, MICHALKIEWICZ Beata, et al. Impact of the modification method of Ni/ZrO2 catalyst by alkali and alkaline earth metals on its activity in thermo-chemical conversion of cellulose[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22303-22314. |
44 | ZHANG Peng, MA Lixuan, MENG Fanhui, et al. Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J]. Applied Catalysis B: Environmental, 2022, 305: 121042. |
45 | SUN Kai, WU Yingquan, TAN Minghui, et al. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors[J]. ChemCatChem, 2019, 11(11): 2695-2706. |
46 | AN Zhe, NING Xun, HE Jing. Ga-promoted CO insertion and C—C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas[J]. Journal of Catalysis, 2017, 356: 157-164. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |