Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 5858-5869.DOI: 10.16085/j.issn.1000-6613.2022-0197
• Industrial catalysis • Previous Articles Next Articles
MU Shiyun1(), LIU Kai1, LYU Xiaoqi1, JIAO Yilai3(), LI Xingang1, LI Hong1, FAN Xiaolei4, GAO Xin1,2()
Received:
2022-02-06
Revised:
2022-04-23
Online:
2022-11-28
Published:
2022-11-25
Contact:
JIAO Yilai, GAO Xin
慕诗芸1(), 刘凯1, 吕孝琦1, 矫义来3(), 李鑫钢1, 李洪1, 范晓雷4, 高鑫1,2()
通讯作者:
矫义来,高鑫
作者简介:
慕诗芸(1997—),女,硕士研究生,研究方向为微波强化反应过程。E-mail:mushiyun1@163.com。
基金资助:
CLC Number:
MU Shiyun, LIU Kai, LYU Xiaoqi, JIAO Yilai, LI Xingang, LI Hong, FAN Xiaolei, GAO Xin. Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5858-5869.
慕诗芸, 刘凯, 吕孝琦, 矫义来, 李鑫钢, 李洪, 范晓雷, 高鑫. 微波协同氧化锆@碳纳米管强化果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(11): 5858-5869.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0197
样品 | ε′ | ε″ | tanδ |
---|---|---|---|
MWCNTs(C) | 847.09 | 927.74 | 1.0952 |
ZrO220/CNTs | 44.72 | 132.46 | 2.9620 |
ZrO240/CNTs | 38.31 | 73.14 | 1.9092 |
ZrO260/CNTs | 22.67 | 36.13 | 1.5937 |
ZrO280/CNTs | 21.61 | 15.81 | 0.7316 |
ZrO290/CNTs | 7.08 | 1.05 | 0.1483 |
ZrO2 | 2.61 | 0.11 | 0.0421 |
样品 | ε′ | ε″ | tanδ |
---|---|---|---|
MWCNTs(C) | 847.09 | 927.74 | 1.0952 |
ZrO220/CNTs | 44.72 | 132.46 | 2.9620 |
ZrO240/CNTs | 38.31 | 73.14 | 1.9092 |
ZrO260/CNTs | 22.67 | 36.13 | 1.5937 |
ZrO280/CNTs | 21.61 | 15.81 | 0.7316 |
ZrO290/CNTs | 7.08 | 1.05 | 0.1483 |
ZrO2 | 2.61 | 0.11 | 0.0421 |
催化剂样品 | Zr测量值 | Zr理论值 | ZrO2实际负载量 |
---|---|---|---|
ZrO220CNTs | 11.74 | 14.81 | 15.87 |
ZrO240/CNTs | 27.96 | 29.61 | 37.78 |
ZrO260/CNTs | 42.79 | 44.42 | 57.82 |
ZrO280/CNTs | 57.31 | 59.23 | 77.45 |
ZrO290/CNTs | 64.56 | 66.63 | 87.24 |
ZrO2 | 74.15 | 74.03 | 100.00 |
催化剂样品 | Zr测量值 | Zr理论值 | ZrO2实际负载量 |
---|---|---|---|
ZrO220CNTs | 11.74 | 14.81 | 15.87 |
ZrO240/CNTs | 27.96 | 29.61 | 37.78 |
ZrO260/CNTs | 42.79 | 44.42 | 57.82 |
ZrO280/CNTs | 57.31 | 59.23 | 77.45 |
ZrO290/CNTs | 64.56 | 66.63 | 87.24 |
ZrO2 | 74.15 | 74.03 | 100.00 |
催化剂样品 | ZrO2@MWCNTs(C)总用量/g | ||
---|---|---|---|
保持催化剂 总量相同 | 保持氧化锆 用量相同 | 保持碳纳米管用量相同 | |
MWCNTs(C) | 0.2000 | — | 0.0844 |
ZrO220/CNTs | 0.2000 | 0.7289 | 0.1003 |
ZrO240/CNTs | 0.2000 | 0.3061 | 0.1356 |
ZrO260/CNTs | 0.2000 | 0.2000 | 0.2000 |
ZrO280/CNTs | 0.2000 | 0.1493 | 0.3742 |
ZrO290/CNTs | 0.2000 | 0.1325 | 0.6614 |
ZrO2 | 0.2000 | 0.1154 | — |
催化剂样品 | ZrO2@MWCNTs(C)总用量/g | ||
---|---|---|---|
保持催化剂 总量相同 | 保持氧化锆 用量相同 | 保持碳纳米管用量相同 | |
MWCNTs(C) | 0.2000 | — | 0.0844 |
ZrO220/CNTs | 0.2000 | 0.7289 | 0.1003 |
ZrO240/CNTs | 0.2000 | 0.3061 | 0.1356 |
ZrO260/CNTs | 0.2000 | 0.2000 | 0.2000 |
ZrO280/CNTs | 0.2000 | 0.1493 | 0.3742 |
ZrO290/CNTs | 0.2000 | 0.1325 | 0.6614 |
ZrO2 | 0.2000 | 0.1154 | — |
1 | JING Y X, GUO Y, XIA Q N, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass[J]. Chem., 2019, 5(10): 2520-2546. |
2 | MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical Reviews, 2018, 118(2): 505-613. |
3 | WEI Z J, LOU J T, LI Z B, et al. One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis-Brønsted acid mixture in N,N-dimethylformamide[J]. Catalysis Science & Technology, 2016, 6(16): 6217-6225. |
4 | ZHANG S, YU Y F, SHENG K C, et al. Catalytic valorization of lignocellulosics: from bulk biofuels to value-added chemicals[J]. Biofuels, Bioproducts and Biorefining, 2021, 15(2): 592-608. |
5 | MARULLO S, RIZZO C, MELI A, et al. Ionic liquid binary mixtures, zeolites, and ultrasound irradiation: a combination to promote carbohydrate conversion into 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5818-5826. |
6 | TEMPELMAN C, JACOBS U, HUT T, et al. Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature[J]. Applied Catalysis A: General, 2019, 588: 117267. |
7 | ZHAO J, ZHOU C M, HE C, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts[J]. Catalysis Today, 2016, 264: 123-130. |
8 | KONWAR L J, MÄKI-ARVELA P, MIKKOLA J P. SO3H-containing functional carbon materials: synthesis, structure, and acid catalysis[J]. Chemical Reviews, 2019, 119(22): 11576-11630. |
9 | KOURIEH R, BENNICI S, MARZO M, et al. Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose[J]. Catalysis Communications, 2012, 19: 119-126. |
10 | ZHOU Y M, ZHANG L J, TAO S Y. Mesoporous ZrO2 nanopowder catalysts for the synthesis of 5-hydroxymethylfurfural[J]. ACS Applied Nano Materials, 2019, 2(8): 5125-5131. |
11 | BUINACHEV S, MASHKOVTSEV M A, ZHIRENKINA N, et al. A new approach for the synthesis of monodisperse zirconia powders with controlled particle size[J]. International Journal of Hydrogen Energy, 2021, 46(32): 16878-16887. |
12 | LIU C C, LEE S, SU D, et al. Controlling the particle size of ZrO2 nanoparticles in hydrothermally stable ZrO2/MWCNT composites[J]. Langmuir, 2012, 28(49): 17159-17167. |
13 | LI L, YAN B, LI H X, et al. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst[J]. Renewable Energy, 2020, 146: 643-650. |
14 | LI X G, PANG C R, LI H, et al. Microwave energy inductive fluidized metal particles discharge behavior and its potential utilization in reaction intensification[J]. Chinese Journal of Chemical Engineering, 2021, 33: 256-267. |
15 | JIA X C, YU I K M, TSANG D C W, et al. Functionalized zeolite-solvent catalytic systems for microwave-assisted dehydration of fructose to 5-hydroxymethylfurfural[J]. Microporous and Mesoporous Materials, 2019, 284: 43-52. |
16 | CHHABRA T, BAHUGUNA A, DHANKHAR S S, et al. Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents[J]. Green Chemistry, 2019, 21(21): 6012-6026. |
17 | WANG Q F, HAO J Q, ZHAO Z B. Microwave-assisted conversion of fructose to 5-hydroxymethylfurfural using sulfonated porous carbon derived from biomass[J]. Australian Journal of Chemistry, 2018, 71(1): 24. |
18 | QI X H, WATANABE M, AIDA T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry, 2008, 10(7): 799. |
19 | JI T, LI Z, LIU C, et al. Niobium-doped TiO2 solid acid catalysts: strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production[J]. Applied Catalysis B: Environmental, 2019, 243: 741-749. |
20 | JI T, TU R, MU L W, et al. Enhancing energy efficiency in saccharide-HMF conversion with core/shell structured microwave responsive catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4352-4358. |
21 | LI H, ZHANG C Y, PANG C R, et al. The advances in the special microwave effects of the heterogeneous catalytic reactions[J]. Frontiers in Chemistry, 2020, 8: 355. |
22 | SONGO M, MOUTLOALI R, RAY S. Development of TiO2-carbon composite acid catalyst for dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysts, 2019, 9(2): 126. |
23 | LYU X Q, LI H, XIANG H Z, et al. Energy efficient production of 5-hydroxymethylfurfural (5-HMF) over surface functionalized carbon superstructures under microwave irradiation[J]. Chemical Engineering Journal, 2022, 428: 131143. |
24 | 吕孝琦, 李洪, 赵振宇, 等. 微波与碳基催化剂协同促进果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(2): 637-647. |
Xiaoqi LYU, LI Hong, ZHAO Zhenyu, et al. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647. | |
25 | WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. Journal of Physical Chemistry C, 2011, 115(29): 14025-14030. |
26 | AI Y J, LIU L, JING K, et al. Noncovalently functionalized carbon nanotubes immobilized Fe-Bi bimetallic oxides as a heterogeneous nanocatalyst for reduction of nitroaromatics[J]. Nano-Structures & Nano-Objects, 2017, 10: 116-124. |
27 | JI T, TU R, MU L W, et al. Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion[J]. Applied Catalysis B: Environmental, 2018, 220: 581-588. |
28 | SHAN Y, GAO L. Synthesis and characterization of phase controllable ZrO2-carbon nanotube nanocomposites[J]. Nanotechnology, 2005, 16(6): 625-630. |
29 | LAU S K, DAG D, OZTURK S, et al. A comparison between the open-ended coaxial probe method and the parallel plate method for measuring the dielectric properties of low-moisture foods[J]. LWT, 2020, 130: 109719. |
30 | 赵振宇, 李洪, 李鑫钢, 等. 基于介电性质差异的微波诱导强化蒸馏分离[J]. 化工进展, 2020, 39(6): 2275-2283. |
ZHAO Zhenyu, LI Hong, LI Xingang, et al. Microwave-induced enhancement of distillation separation based on dielectric properties difference[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283. | |
31 | MU S Y, LIU K, LI H, et al. Microwave-assisted synthesis of highly dispersed ZrO2 on CNTs as an efficient catalyst for producing 5-hydroxymethylfurfural (5-HMF)[J]. Fuel Processing Technology, 2022, 233: 107292. |
32 | ROMERO-SÁEZ M, DONGIL A B, BENITO N, et al. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies[J]. Applied Catalysis B: Environmental, 2018, 237: 817-825. |
33 | QUAN Y H, ZHANG N, ZHANG Z L, et al. Enhanced performance of Ni catalysts supported on ZrO2 nanosheets for CO2 methanation: effects of support morphology and chelating ligands[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14395-14406. |
34 | WU Y Q, WANG H J, WANG L Y, et al. Effect of iron on ZrO2-based catalysts for direct synthesis of isobutanol from syngas[J]. Fuel, 2021, 304: 121342. |
35 | ADDO NTIM S, MITRA S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification[J]. Journal of Colloid and Interface Science, 2012, 375(1): 154-159. |
36 | GEORGIEVA I, DANCHOVA N, GUTZOV S, et al. DFT modeling, UV-vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials[J]. Journal of Molecular Modeling, 2012, 18(6): 2409-2422. |
37 | ANKU W W, OPPONG S O B, SHUKLA S K, et al. Palladium-doped-ZrO2-multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment[J]. Applied Physics A, 2016, 122(6): 1-8. |
38 | LI M F, ZHANG Q T, LUO B, et al. Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural[J]. Industrial Crops and Products, 2020, 145: 111920. |
39 | WHITAKER M R, PARULKAR A, RANADIVE P, et al. Examining acid formation during the selective dehydration of fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide and water[J]. ChemSusChem, 2019, 12(10): 2211-2219. |
40 | QI X H, WATANABE M, AIDA T M, et al. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural[J]. Catalysis Communications, 2009, 10(13): 1771-1775. |
41 | WANG N N, YAO Y, LI W, et al. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over a mesoscopically assembled sulfated zirconia nanoparticle catalyst in organic solvent[J]. RSC Advances, 2014, 4(100): 57164-57172. |
42 | LAM E, LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410. |
43 | ZHAO Z Y, SHEN X, LI H, et al. Frontispiz: watching microwave-induced microscopic hot spots via the thermosensitive fluorescence of europium/terbium mixed-metal organic complexes[J]. Angewandte Chemie, 2022, 134(6): e202280662. |
44 | ZHAO Z Y, LI H, ZHAO K, et al. Microwave-assisted synthesis of MOFs: rational design via numerical simulation[J]. Chemical Engineering Journal, 2022, 428: 131006. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[15] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |