Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 36-43.DOI: 10.16085/j.issn.1000-6613.2021-2552
• Chemical processes and equipment • Previous Articles Next Articles
PAN Yanqiu(), LI Pengfei, GAO Shilei, YU Lu
Received:
2021-12-15
Revised:
2022-03-17
Online:
2022-11-10
Published:
2022-10-20
Contact:
PAN Yanqiu
通讯作者:
潘艳秋
作者简介:
潘艳秋(1962—),女,教授,博士生导师,研究方向为过程强化与智能化工。E-mail:yqpan@dlut.edu.cn。
CLC Number:
PAN Yanqiu, LI Pengfei, GAO Shilei, YU Lu. Application of BP neural network based on MIC screening rules in modeling and product prediction of shift unit[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 36-43.
潘艳秋, 李鹏飞, 高石磊, 俞路. 基于MIC筛选规则和BP神经网络的变换装置建模及产品预测[J]. 化工进展, 2022, 41(S1): 36-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2552
日期 | FIC2201 | TI2216E | PI2201 | PDI2241 | … | AI2201 |
---|---|---|---|---|---|---|
10/01/0:00 | 83.696 | 417.92 | 3.433 | 25.51 | … | 0.4237 |
… | … | … | … | … | … | … |
10/02/0:00 | 81.5675 | 418.30 | 3.4201 | 30.30 | … | 0.4307 |
… | … | … | … | … | … | … |
10/03/0:00 | 81.3952 | 421.16 | 3.4257 | 34.16 | … | 0.4550 |
… | … | … | … | … | … | … |
10/04/0:00 | 95.8543 | 420.26 | 3.5567 | 42.12 | … | 0.5284 |
… | … | … | … | … | … | … |
11/13/0:00 | 100.5424 | 416.68 | 3.5665 | 75.17 | … | 0.6530 |
日期 | FIC2201 | TI2216E | PI2201 | PDI2241 | … | AI2201 |
---|---|---|---|---|---|---|
10/01/0:00 | 83.696 | 417.92 | 3.433 | 25.51 | … | 0.4237 |
… | … | … | … | … | … | … |
10/02/0:00 | 81.5675 | 418.30 | 3.4201 | 30.30 | … | 0.4307 |
… | … | … | … | … | … | … |
10/03/0:00 | 81.3952 | 421.16 | 3.4257 | 34.16 | … | 0.4550 |
… | … | … | … | … | … | … |
10/04/0:00 | 95.8543 | 420.26 | 3.5567 | 42.12 | … | 0.5284 |
… | … | … | … | … | … | … |
11/13/0:00 | 100.5424 | 416.68 | 3.5665 | 75.17 | … | 0.6530 |
方法 | sigmoid | tanh | lin y=0.2x | co-no |
---|---|---|---|---|
Pearson | 0.973 | 0.935 | 1.000 | -0.187 |
Spearman | 1.000 | 1.000 | 1.000 | -0.140 |
Kendall | 1.000 | 1.000 | 1.000 | -0.096 |
MIC | 1.000 | 1.000 | 1.000 | 1.000 |
方法 | sigmoid | tanh | lin y=0.2x | co-no |
---|---|---|---|---|
Pearson | 0.973 | 0.935 | 1.000 | -0.187 |
Spearman | 1.000 | 1.000 | 1.000 | -0.140 |
Kendall | 1.000 | 1.000 | 1.000 | -0.096 |
MIC | 1.000 | 1.000 | 1.000 | 1.000 |
序号 | MIC | 序号 | MIC |
---|---|---|---|
1 | 0.6117 | 18 | 0.4051 |
2 | 0.2278 | 19 | 0.3978 |
3 | 0.2758 | 20 | 0.4371 |
4 | 0.6272 | 21 | 0.3866 |
5 | 0.3623 | 22 | 0.3996 |
6 | 0.3246 | 23 | 0.3918 |
7 | 0.4250 | 24 | 0.5599 |
8 | 0.2665 | 25 | 0.4182 |
9 | 0.3395 | 26 | 0.2440 |
10 | 0.4806 | 27 | 0.5809 |
11 | 0.2833 | 28 | 0.3735 |
12 | 0.5588 | 29 | 0.7055 |
13 | 0.5655 | 30 | 0.2579 |
14 | 0.5568 | 31 | 0.2424 |
15 | 0.5577 | … | … |
16 | 0.5568 | 107 | 0.3020 |
17 | 0.5657 | 均值 | 0.4553 |
序号 | MIC | 序号 | MIC |
---|---|---|---|
1 | 0.6117 | 18 | 0.4051 |
2 | 0.2278 | 19 | 0.3978 |
3 | 0.2758 | 20 | 0.4371 |
4 | 0.6272 | 21 | 0.3866 |
5 | 0.3623 | 22 | 0.3996 |
6 | 0.3246 | 23 | 0.3918 |
7 | 0.4250 | 24 | 0.5599 |
8 | 0.2665 | 25 | 0.4182 |
9 | 0.3395 | 26 | 0.2440 |
10 | 0.4806 | 27 | 0.5809 |
11 | 0.2833 | 28 | 0.3735 |
12 | 0.5588 | 29 | 0.7055 |
13 | 0.5655 | 30 | 0.2579 |
14 | 0.5568 | 31 | 0.2424 |
15 | 0.5577 | … | … |
16 | 0.5568 | 107 | 0.3020 |
17 | 0.5657 | 均值 | 0.4553 |
变量编号 | 变量名称及含义 | 变量编号 | 变量名称及含义 |
---|---|---|---|
1 | TI2201/来自粉煤气化的粗合成气温度 | 13 | PI2206/E2201入口低压氮气压力 |
2 | TIC2206/E2201入口HS温度 | 14 | PDI2207/R2201A催化剂床层压差 |
3 | TI2211E/R2201A催化剂床层E点温度 | 15 | PIC2214/E2205压力 |
4 | TI2214A/R2201B催化剂床层A点温度 | 16 | PDI2222/R2204催化剂床层压差 |
5 | TIC2270/R2203入口温度 | 17 | PI2231/P2201A/B出口工艺冷凝液压力 |
6 | TI2225A/R2203催化剂床层A点温度 | 18 | FIC2201/进变换系统MS流量 |
7 | TI2231/E2208出口低压蒸汽温度 | 19 | FIC2208/V2204入口锅炉水流量 |
8 | TI2235/V2202出口变换气温度 | 20 | LI2201/V2201汽液分离器液位 |
9 | TI2237/E2210出口变换气温度 | 21 | LIC2208/V2206液位差 |
10 | TI2246/C2202出口酸性气体温度 | 22 | LIC2210/E2208液位 |
11 | PI2201/V2201粗合成气进口压力 | 23 | AI2201/CO摩尔组成分析 |
12 | PI2203进变换中压蒸汽压力 |
变量编号 | 变量名称及含义 | 变量编号 | 变量名称及含义 |
---|---|---|---|
1 | TI2201/来自粉煤气化的粗合成气温度 | 13 | PI2206/E2201入口低压氮气压力 |
2 | TIC2206/E2201入口HS温度 | 14 | PDI2207/R2201A催化剂床层压差 |
3 | TI2211E/R2201A催化剂床层E点温度 | 15 | PIC2214/E2205压力 |
4 | TI2214A/R2201B催化剂床层A点温度 | 16 | PDI2222/R2204催化剂床层压差 |
5 | TIC2270/R2203入口温度 | 17 | PI2231/P2201A/B出口工艺冷凝液压力 |
6 | TI2225A/R2203催化剂床层A点温度 | 18 | FIC2201/进变换系统MS流量 |
7 | TI2231/E2208出口低压蒸汽温度 | 19 | FIC2208/V2204入口锅炉水流量 |
8 | TI2235/V2202出口变换气温度 | 20 | LI2201/V2201汽液分离器液位 |
9 | TI2237/E2210出口变换气温度 | 21 | LIC2208/V2206液位差 |
10 | TI2246/C2202出口酸性气体温度 | 22 | LIC2210/E2208液位 |
11 | PI2201/V2201粗合成气进口压力 | 23 | AI2201/CO摩尔组成分析 |
12 | PI2203进变换中压蒸汽压力 |
算法 | R | MSE/×10-4 | 时间/s |
---|---|---|---|
L-M | 0.979 | 1.56 | 117 |
B-R | 0.983 | 1.19 | 1001 |
SCG | 0.943 | 4.06 | 151 |
算法 | R | MSE/×10-4 | 时间/s |
---|---|---|---|
L-M | 0.979 | 1.56 | 117 |
B-R | 0.983 | 1.19 | 1001 |
SCG | 0.943 | 4.06 | 151 |
序号 | 组合 | R | MSE | 序号 | 组合 | R | MSE |
---|---|---|---|---|---|---|---|
1 | 6×6×6 | 0.9788 | 1.560×10-4 | 10 | 10×7×6 | 0.9804 | 1.447×10-4 |
2 | 7×6×6 | 0.9794 | 1.515×10-4 | 11 | 6×8×6 | 0.9791 | 1.540×10-4 |
3 | 8×6×6 | 0.9798 | 1.489×10-4 | 12 | 7×8×6 | 0.9800 | 1.476×10-4 |
4 | 9×6×6 | 0.9805 | 1.436×10-4 | 13 | 8×8×6 | 0.9804 | 1.444×10-4 |
5 | 10×6×6 | 0.9807 | 1.426×10-4 | 14 | 9×8×6 | 0.9805 | 1.439×10-4 |
6 | 6×7×6 | 0.9791 | 1.537×10-4 | … | … | … | … |
7 | 7×7×6 | 0.9798 | 1.492×10-4 | 95 | 10×9×9 | 0.9813 | 1.382×10-4 |
8 | 8×7×6 | 0.9800 | 1.471×10-4 | … | … | … | … |
9 | 9×7×6 | 0.9805 | 1.439×10-4 | 125 | 10×10×10 | 0.9812 | 1.383×10-4 |
序号 | 组合 | R | MSE | 序号 | 组合 | R | MSE |
---|---|---|---|---|---|---|---|
1 | 6×6×6 | 0.9788 | 1.560×10-4 | 10 | 10×7×6 | 0.9804 | 1.447×10-4 |
2 | 7×6×6 | 0.9794 | 1.515×10-4 | 11 | 6×8×6 | 0.9791 | 1.540×10-4 |
3 | 8×6×6 | 0.9798 | 1.489×10-4 | 12 | 7×8×6 | 0.9800 | 1.476×10-4 |
4 | 9×6×6 | 0.9805 | 1.436×10-4 | 13 | 8×8×6 | 0.9804 | 1.444×10-4 |
5 | 10×6×6 | 0.9807 | 1.426×10-4 | 14 | 9×8×6 | 0.9805 | 1.439×10-4 |
6 | 6×7×6 | 0.9791 | 1.537×10-4 | … | … | … | … |
7 | 7×7×6 | 0.9798 | 1.492×10-4 | 95 | 10×9×9 | 0.9813 | 1.382×10-4 |
8 | 8×7×6 | 0.9800 | 1.471×10-4 | … | … | … | … |
9 | 9×7×6 | 0.9805 | 1.439×10-4 | 125 | 10×10×10 | 0.9812 | 1.383×10-4 |
1 | MA Y, XIA L, MENG W. A review of advanced manufacturing strategies and development in typical industrialized countries[J]. Journal of Physics: Conference Series, 2019, 1237: 42007. |
2 | 中国电子技术标准化研究院, 中国信息物理系统发展论坛. 信息物理系统建设指南 (2020)[EB/OL]. [2020-12-11]. . |
China Electronics Standardization Institute, China Cyber Physics System Development Forum. Cyber-physical system construction guide (2020) [EB/OL]. [2020-12-11]. . | |
3 | LI D. Perspective for smart factory in petrochemical industry[J]. Computers & Chemical Engineering, 2016, 91: 136-148. |
4 | FENG Y, ZHAO Y, ZHENG H, et al. Data-driven product design toward intelligent manufacturing: a review[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1729881420911257-1-1729881420911257-18. |
5 | EESA A, ARABO W. A normalization methods for backpropagation: a comparative study[J]. Science Journal of University of Zakho, 2017, 5: 319. |
6 | ANTWI P, LI J, BOADI P O, et al. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 2017, 228: 106-115. |
7 | 刘金鹏, 赵兵涛, 钱魏锋, 等. 基于BP神经网络的旋风分离器分割粒径模化与预测[J]. 化工进展, 2021, 40(2): 671-677. |
LIU Jinpeng, ZHAO Bingtao, QIAN Weifeng, et al. Modeling and prediction of particle cutoff size of cyclone separator based on BP neural network[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 671-677. | |
8 | 董玉玺, 李乐宁, 田文德. 基于多层优化PCC-SDG方法的化工过程故障诊断[J]. 化工学报, 2018, 69(3): 1173-1181. |
DONG Yuxi, LI Lening, TIAN Wende. A novel fault diagnosis method based on multilayer optimized PCC-SDG[J]. CIESC Journal, 2018, 69(3): 1173-1181. | |
9 | DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
10 | ZHOU Y, LI S. BP neural network modeling with sensitivity analysis on monotonicity based Spearman coefficient[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200: 103977. |
11 | 任玉佳, 王骥, 田文德. 基于特征工程和KELM的化工过程故障检测与识别[J].高校化学工程学报, 2019, 33(5): 1271-1284. |
RENG Yujia, WANG Ji, TIAN Wende. Fault detection and identification in chemical processes based on feature engineering and kernel extreme learning machine[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1271-1284. | |
12 | RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518. |
13 | 马立平. 统计数据标准化-无量纲化方法-现代统计分析方法的学与用(三)[J]. 北京统计, 2000(3): 34-35. |
MA Liping. Statistical data standardization-dimensionless method-learning and application of modern statistical analysis methods (3)[J]. Beijing statistics,2000(3):34-35. | |
14 | 顾俊发, 许明阳, 马方圆, 等. 基于MIC的支持向量回归及其在化工过程中的应用[J].化工学报, 2021, 72(3): 1480-1486. |
GU Junfa, XU Mingyang, MA Fangyuan, et al. Support vector regression based on maximal information coefficient and its application in chemical industrial processes[J]. CIESC Journal, 2021, 72(3): 1480-1486. | |
15 | 高石磊. 基于数字化建模的变换装置产品预测与优化[D]. 大连: 大连理工大学, 2021. |
GAO Shilei. Product prediction and optimization of shift device based on digital modeling[D]. Dalian: Dalian University of Technology, 2021. | |
16 | 孟燕霞. 最大信息系数算法研究[D]. 太原: 太原理工大学, 2019. |
MENG Y X. The maximal information coefficient algorithm research[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
17 | RESHEF D, RESHEF Y, MITZENMACHER M, et al. Equitability analysis of the maximal information coefficient, with comparisons[J]. Arxiv Preprint Arxiv:, 2013. |
18 | 马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15): 1765-1771. |
MA Wenli, LI Zhiping, GAO Chuang, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells[J]. China Sciencepaper, 2018, 13(15): 1765-1771. | |
19 | 姜丰, 朱家玲, 胡开永, 等. Pearson相关系数评价ORC系统蒸发器特性的应用研究[J].太阳能学报, 2019, 40(10): 2732-2738. |
JIANG Feng, ZHU Jialing, HU Kaiyong, et al. Pearson correlation coefficient evaluation of orc system evaporator characteristics applied research[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2732-2738. | |
20 | DAMILOLA E B, AMBROSE A, OMOLEYE J. Artificial neural network and its applications in the energy sector: an overview[J]. International Journal of Energy Economics and Policy, 2020, 10(2): 250-264. |
21 | ASTHANA S, PANDIT A, BAHRDWAJ A. Analysis of multiple hidden layers vs. accuracy in performance using back propagation neural network[J]. Indian Journal of Science and Technology, 2017, 10(4): doi:10.17485/ijst/2017/v10i4/110899. |
[1] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[2] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[3] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[4] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[5] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[6] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[7] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[8] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[9] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[10] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[11] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[12] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[13] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[14] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[15] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |