Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 307-317.DOI: 10.16085/j.issn.1000-6613.2022-0194
• Materials science and technology • Previous Articles Next Articles
YIN Shuang1(), LIANG Weijie2, CHEN Peijia3, ZHANG Zhicong3, GE Jianfang3()
Received:
2022-02-06
Revised:
2022-03-28
Online:
2022-11-10
Published:
2022-10-20
Contact:
GE Jianfang
尹爽1(), 梁伟杰2, 陈沛嘉3, 张志聪3, 葛建芳3()
通讯作者:
葛建芳
作者简介:
尹爽(1999—),男,硕士研究生,研究方向为环境友好型材料。E-mail:yins105@zhku.edu.cn。
基金资助:
CLC Number:
YIN Shuang, LIANG Weijie, CHEN Peijia, ZHANG Zhicong, GE Jianfang. Research progress on modification of PBAT-base biodegradable plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 307-317.
尹爽, 梁伟杰, 陈沛嘉, 张志聪, 葛建芳. 聚己二酸丁二醇酯-共对苯二甲酸酯基可降解塑料改性研究进展[J]. 化工进展, 2022, 41(S1): 307-317.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0194
标准号 | 标准名称 |
---|---|
GB/T 18006.2—1999 | 一次性可降解餐饮具降解性能试验方法 |
GB/T 19275—2003 | 材料在特定微生物作用下潜在生物分解和崩解能力的评价 |
GB/T 19276.1—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法 |
GB/T 19276.2—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 |
GB/T 19811—2005 | 在定义堆肥化中试条件下塑料材料崩解程度的测定 |
GB/T 22047—2008 | 土壤中塑料材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法 |
GB/T 19277.1—2011 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法 |
GB/T 19277.2—2013 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 |
GB/T 32106—2015 | 塑料在水性培养液中最终厌氧生物分解能力的测定 通过测量生物气体产物的方法 |
GB/T 33797—2017 | 塑料 在高固体份堆肥条件下最终厌氧生物分解能力的测定 采用分析测定释放生物气体的方法 |
GB/T 17603—2017 | 光解性塑料户外暴露试验方法 |
GB/T 38737—2020 | 塑料 受控污泥消化系统中材料最终厌氧生物分解率测定 采用测量释放生物气体的方法 |
标准号 | 标准名称 |
---|---|
GB/T 18006.2—1999 | 一次性可降解餐饮具降解性能试验方法 |
GB/T 19275—2003 | 材料在特定微生物作用下潜在生物分解和崩解能力的评价 |
GB/T 19276.1—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法 |
GB/T 19276.2—2003 | 水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 |
GB/T 19811—2005 | 在定义堆肥化中试条件下塑料材料崩解程度的测定 |
GB/T 22047—2008 | 土壤中塑料材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法 |
GB/T 19277.1—2011 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法 |
GB/T 19277.2—2013 | 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 |
GB/T 32106—2015 | 塑料在水性培养液中最终厌氧生物分解能力的测定 通过测量生物气体产物的方法 |
GB/T 33797—2017 | 塑料 在高固体份堆肥条件下最终厌氧生物分解能力的测定 采用分析测定释放生物气体的方法 |
GB/T 17603—2017 | 光解性塑料户外暴露试验方法 |
GB/T 38737—2020 | 塑料 受控污泥消化系统中材料最终厌氧生物分解率测定 采用测量释放生物气体的方法 |
颁布机构 | 标准号 | 标准名称 |
---|---|---|
欧洲标准化委员会(CEN) | EN 13432 | 包装-堆肥和生物降解可回收的包装物要求-包装物最终的试验方法和评价标准 |
澳大利亚生物分解塑料协会 | AS4736 | 生物降解塑料-适合堆肥化或者其他生物处理方式的生物降解塑料 |
德国标准化学会(DIN) | DINV54900 | 通过堆肥实验检测生物降解塑料生物降解性 |
美国试验与材料协会(ASTM) | ASTM D6400 | 可堆肥化塑料规范 |
全国塑料制品标准化技术委员会 | GB/T 20197 | 降解塑料的定义、分类、标识和降解性能要求 |
颁布机构 | 标准号 | 标准名称 |
---|---|---|
欧洲标准化委员会(CEN) | EN 13432 | 包装-堆肥和生物降解可回收的包装物要求-包装物最终的试验方法和评价标准 |
澳大利亚生物分解塑料协会 | AS4736 | 生物降解塑料-适合堆肥化或者其他生物处理方式的生物降解塑料 |
德国标准化学会(DIN) | DINV54900 | 通过堆肥实验检测生物降解塑料生物降解性 |
美国试验与材料协会(ASTM) | ASTM D6400 | 可堆肥化塑料规范 |
全国塑料制品标准化技术委员会 | GB/T 20197 | 降解塑料的定义、分类、标识和降解性能要求 |
1 | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
2 | NAMBIAR S, YEOW J T W. Polymer-composite materials for radiation protection[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5717-5726. |
3 | ATHAPATHTHU A M, THUSHARI G G N, DIAS P C B, et al. Plastics in surface water of southern coastal belt of Sri Lanka (Northern Indian Ocean): distribution and characterization by FTIR[J]. Marine Pollution Bulletin, 2020, 161(Pt A): 111750. |
4 | ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea[J]. PLoS One, 2014, 9(12): e111913. |
5 | VERLA A W, ENYOH C E, VERLA E N, et al. Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication[J]. SN Applied Sciences, 2019, 1(11): 1-30. |
6 | MOHAMED N N H, KOOI M, DIEPENS N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096. |
7 | SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265. |
8 | LI W C, TSE H F, FOK L. Plastic waste in the marine environment: a review of sources, occurrence and effects[J]. The Science of the Total Environment, 2016, 566/567: 333-349. |
9 | RYDZ Joanna, Marta MUSIOŁ, Barbara ZAWIDLAK-WĘGRZYŃSKA, et al. Biopolymers for food design: present and future of biodegradable polymers for food packaging applications[M]. Amsterdam: Elsevier, 2018: 431-467. |
10 | Racha AL-ITRY, LAMNAWAR Khalid, MAAZOUZ Abderrahim. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation and Stability, 2012, 97(10): 1898-1914. |
11 | VROMAN Isabelle, TIGHZERT Lan. Biodegradable polymers[J]. Materials, 2009, 2(2): 307-344. |
12 | RODRIGUES B V M, SILVA A S, MELO G F S, et al. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers[J]. Materials Science & Engineering C, Materials for Biological Applications, 2016, 59: 782-791. |
13 | BORDES Perrine, POLLET Eric, Luc AVÉROUS. Nano-biocomposites: biodegradable polyester/nanoclay systems[J]. Progress in Polymer Science, 2009, 34(2): 125-155. |
14 | DAMMAK Mohamed, FOURATI Yesmine, Quim TARRÉS, et al. Blends of PBAT with plasticized starch for packaging applications: mechanical properties, rheological behaviour and biodegradability[J]. Industrial Crops and Products, 2020, 144: 112061. |
15 | 张婷, 张彩丽, 宋鑫宇, 等. PBAT薄膜的制备及应用研究进展[J]. 中国塑料, 2021, 35(7): 115-125. |
ZHANG Ting, ZHANG Caili, SONG Xinyu, et al. Research progress in preparation and applications of PBAT films[J]. China Plastics, 2021, 35(7): 115-125. | |
16 | THAKUR M K, THAKUR V K, GUPTA R K, et al. Synthesis and applications of biodegradable soy based graft copolymers: a review[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1): 1-17. |
17 | MOUSTAFA H, YOUSSEF A M, DARWISH N A, et al. Eco-friendly polymer composites for green packaging: future vision and challenges[J]. Composites Part B: Engineering, 2019, 172: 16-25. |
18 | 付凯妹, 王红秋, 慕彦君, 等. 聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)生产技术现状及其研究进展[J]. 化工进展, 2021, 40(11): 6173-6180. |
FU Kaimei, WANG Hongqiu, MU Yanjun, et al. Status and research development of PBAT production technology[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6173-6180. | |
19 | 陈文君, 王蕾, 杨少华, 等. 以PBAT为基材的活性包装薄膜及其在食品包装中的应用研究进展[J]. 化工新型材料, 2021, 49(6): 215-221. |
CHEN Wenjun, WANG Lei, YANG Shaohua, et al. Research progress on active packaging film based on PBAT and its application in food packaging[J]. New Chemical Materials, 2021, 49(6): 215-221. | |
20 | FRANCISCO W, FERREIRA F V, FERREIRA E V, et al. Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite[J]. Journal of Aerospace Technology and Management, 2015, 7(3): 289-293. |
21 | 王鑫, 石敏, 余晓磊, 等. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909. |
WANG Xin, SHI Min, YU Xiaolei, et al. High performance and fully biodegradable poly (lactic acid) (PLA) composites modified by poly (butylene adipate-co-terephthalate) (PBAT): a review[J]. Materials Reports, 2019, 33(11): 1897-1909. | |
22 | Maija PÖLLÄNEN, PIRINEN Sami, SUVANTO Mika, et al. Influence of carbon nanotube-polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene[J]. Composites Science and Technology, 2011, 71(10): 1353-1360. |
23 | MITTAL G, DHAND V, RHEE K Y, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 11-25. |
24 | MORELLI C L, BELGACEM M N, BRANCIFORTI M C, et al. Nanocomposites of PBAT and cellulose nanocrystals modified byin situpolymerization and melt extrusion[J]. Polymer Engineering & Science, 2016, 56(12): 1339-1348. |
25 | COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44(9): 1624-1652. |
26 | MARIANO Marcos, KISSI Nadia EL, DUFRESNE Alain. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate Polymers, 2016, 137: 174-183. |
27 | OKSMAN K, AITOMÄKI Y, MATHEW A P, et al. Review of the recent developments in cellulose nanocomposite processing[J]. Composites A: Applied Science and Manufacturing, 2016, 83: 2-18. |
28 | ARMENTANO Ilaria, PUGLIA Debora, LUZI Francesca, et al. Nanocomposites based on biodegradable polymers[J]. Materials, 2018, 11(5): 795. |
29 | GIOIA Claudio, GIACOBAZZI Greta, VANNINI Micaela, et al. End of life of biodegradable plastics: composting versus Re/upcycling[J]. ChemSusChem, 2021, 14(19): 4167-4175. |
30 | FUKUSHIMA K, RASYIDA A, YANG M C. Characterization, degradation and biocompatibility of PBAT based nanocomposites[J]. Applied Clay Science, 2013, 80/81: 291-298. |
31 | RUGGERO F, ONDERWATER R C A, CARRETTI Emiliano, et al. Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting[J]. Journal of Polymers and the Environment, 2021, 29(9): 3015-3028. |
32 | MUTHURAJ Rajendran, MISRA Manjusri, MOHANTY A K. Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions[J]. Journal of Applied Polymer Science, 2015, 132(27): 42189. |
33 | Angélica DÍAZ, KATSARAVA Ramaz, Jordi PUIGGALÍ. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)S[J]. International Journal of Molecular Sciences, 2014, 15(5): 7064-7123. |
34 | 潘小虎, 李乃祥, 王雪盼, 等. 聚对苯二甲酸丁二醇酯共聚己二酸丁二醇酯热降解动力学研究[J]. 合成技术及应用, 2021, 36(4): 17-22. |
PAN Xiaohu, LI Naixiang, WANG Xuepan, et al. Kinetics of thermal degradation for PBAT[J]. Synthetic Technology & Application, 2021, 36(4): 17-22. | |
35 | LA MANTIA F P, MORREALE M, BOTTA L, et al. Degradation of polymer blends: a brief review[J]. Polymer Degradation and Stability, 2017, 145: 79-92. |
36 | KANZAWA Takeshi, TOKUMITSU Katsuhisa. Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(butylene adipate-co-terephthalate) blend through reactive processing[J]. Journal of Applied Polymer Science, 2011, 121(5): 2908-2918. |
37 | HERRERA Ricard, FRANCO Lourdes, Alfonso RODRÍGUEZ-GALÁN, et al. Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)S[J]. Journal of Polymer Science A: Polymer Chemistry, 2002, 40(23): 4141-4157. |
38 | 管彤晖, 付烨, 翁云宣. PBAT全生物降解地膜在土壤试验中的降解行为研究[J]. 中国塑料, 2022, 36(1): 67-72. |
GUAN Tonghui, FU Ye, WENG Yunxuan. Degradation behaviors of PBAT biodegradable mulch in soil[J]. China Plastics, 2022, 36(1): 67-72. | |
39 | SOMEYA Yoshihiro, KONDO Naoto, SHIBATA Mitsuhiro. Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites[J]. Journal of Applied Polymer Science, 2007, 106(2): 730-736. |
40 | 尹玉霞, 楚云松. 改性植物纤维增强PBAT复合材料的性能研究[J]. 塑料科技, 2021, 49(10): 17-20. |
YIN Yuxia, CHU Yunsong. Study on properties of modified plant fiber reinforced PBAT composites[J]. Plastics Science and Technology, 2021, 49(10): 17-20. | |
41 | LEE S H, LIM S W, LEE K H. Properties of potentially biodegradable copolyesters of (succinic acid-1, 4-butanediol)/(dimethyl terephthalate-1, 4-butanediol)[J]. Polymer International, 1999, 48(9): 861-867. |
42 | NAMPOOTHIRI K M, NAIR N R, JOHN R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101(22): 8493-8501. |
43 | FERREIRA F V, PINHEIRO I F, GOUVEIA R F, et al. Functionalized cellulose nanocrys tals as reinforcement in biodegradable polymer nanocomposites[J]. Polymer Composites, 2018, 39: E9-E29. |
44 | NATTERODT J C, SAPKOTA J, FOSTER E J, et al. Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups[J]. Biomacromolecules, 2017, 18(2): 517-525. |
45 | BARBOSA R F S, SOUZA A G, ROSA D S. Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites[J]. Polymer Composites, 2020, 41(7): 2841-2854. |
46 | ZHANG Xuzhen, MA Piming, ZHANG Yong. Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites[J]. Polymer Bulletin, 2016, 73(7): 2073-2085. |
47 | ZHANG Chenhao, CHEN Fangping, MENG Wei, et al. Polyurethane prepolymer-modified high-content starch-PBAT films[J]. Carbohydrate Polymers, 2021, 253: 117168. |
48 | BITTMANN Birgit, BOUZA Rebeca, BARRAL Luis, et al. Nanoclay-reinforced poly(butylene adipate-co-terephthalate) biocomposites for packaging applications[J]. Polymer Composites, 2012, 33(11): 2022-2028. |
49 | FUKUSHIMA K, WU M H, BOCCHINI S, et al. PBAT based nanocomposites for medical and industrial applications[J]. Materials Science and Engineering C, 2012, 32(6): 1331-1351. |
50 | FUKUSHIMA Kikku, RASYIDA Amaliya, YANG Ming Chien. Biocompatibility of organically modified nanocomposites based on PBAT[J]. Journal of Polymer Research, 2013, 20(11): 1-12. |
51 | SHI Nan, CAI Jun, DOU Qiang. Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites[J]. Advanced Materials Research, 2012, 602/603/604: 768-771. |
52 | DE CD NUNES E, DE SOUZA A G, ROSA D S. Use of a chain extender as a dispersing agent of the CaCO3 into PBAT matrix[J]. Journal of Composite Materials, 2020, 54(10): 1373-1382. |
53 | MENG D, XIE J Z, WATERHOUSE G I N, et al. Biodegradable poly(butylene adipate-co-terephthalate) composites reinforced with bio-based nanochitin: preparation, enhanced mechanical and thermal properties[J]. Journal of Applied Polymer Science, 2020, 137(12): 48485. |
54 | XIONG Shaojun, PANG Bo, ZHOU Sijie, et al. Economically competitive biodegradable PBAT/lignin composites: Effect of lignin methylation and compatibilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346. |
55 | MALINOWSKI Rafał, KRASOWSKA Katarzyna, SIKORSKA Wanda, et al. Studies on manufacturing, mechanical properties and structure of poly(butylene adipate-co-terephthalate)-based green composites modified by coconut fibers[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(6): 1095-1105. |
56 | YANG Fang, QIU Zhaobin. Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2011, 119(3): 1426-1434. |
57 | LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2011, 83(4): 1834-1842. |
58 | FERREIRA F V, FRANCISCO W, MENEZES B R C, et al. Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites[J]. Applied Surface Science, 2016, 389: 921-929. |
59 | CAMARERO-ESPINOSA S, BODAY D J, WEDER C, et al. Cellulose nanocrystal driven crystallization of poly(d, l-lactide) and improvement of the thermomechanical properties[J]. Journal of Applied Polymer Science, 2015, 132(10): 41607. |
60 | MORELLI C L, BELGACEM M N, BRANCIFORTI M C, et al. Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals[J]. Composites A: Applied Science and Manufacturing, 2016, 83: 80-88. |
61 | FERREIRA F V, FRANCESCHI W, MENEZES B R C, et al. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites[J]. Applied Surface Science, 2017, 410: 267-277. |
62 | PAN Hongwei, HAO Yanping, ZHAO Yan, et al. Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1294-1304. |
63 | LI Jiaxu, WANG Songlin, LAI Lei, et al. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets[J]. Carbon, 2021, 172: 31-40. |
64 | WEI Dafu, WANG Hao, ZIAEE Zainab, et al. Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach[J]. Materials Science & Engineering C: Materials for Biological Applications, 2016, 58: 986-991. |
65 | WANG Hao, WEI Dafu, ZHENG Anna, et al. Soil burial biodegradation of antimicrobial biodegradable PBAT films[J]. Polymer Degradation and Stability, 2015, 116: 14-22. |
66 | MONDAL Dibyendu, BHOWMICK Biplab, MAITY Dipanwita, et al. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity[J]. Journal of Food Science, 2015, 80(3): E602-E609. |
[1] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[2] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[3] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[4] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[5] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[6] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[7] | CAI Juyan, SU Qiong, WANG Yanbin, WANG Hongling, LIANG Junxi, WANG Zhongxu, GUO Li, ZHAO Libin. Research progress on biodegradable foaming materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1457-1470. |
[8] | DUO Jia, YAO Guodong, WANG Yingji, ZENG Xu, JIN Binbin. Effects on the photo-degradation of norfloxacin using modified Au-TiO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 624-630. |
[9] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[10] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
[11] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[12] | LIU Haicheng, MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru. Preparation of WO3/BiOCl0.7I0.3 photocatalyst and its photocatalytic degradation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 255-264. |
[13] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[14] | LIU Yixuan, LIN Yuechao, MA Weifang. Research progress on degradation of halogenated organic contaminants in water by visible light photocatalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 571-579. |
[15] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |