Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2460-2467.DOI: 10.16085/j.issn.1000-6613.2021-1216
• Industrial catalysis • Previous Articles Next Articles
SONG Shaotong1,2(), LI Tianshu2, JU Yana2, LYU Zhongwu2, WU Pei2, SUN Changyu1, DUAN Aijun1()
Received:
2021-06-08
Revised:
2021-06-29
Online:
2022-05-24
Published:
2022-05-05
Contact:
DUAN Aijun
宋绍彤1,2(), 李天舒2, 鞠雅娜2, 吕忠武2, 吴培2, 孙长宇1, 段爱军1()
通讯作者:
段爱军
作者简介:
宋绍彤(1990—),女,博士研究生,研究方向为汽油加氢精制催化剂。E-mail:CLC Number:
SONG Shaotong, LI Tianshu, JU Yana, LYU Zhongwu, WU Pei, SUN Changyu, DUAN Aijun. Effect of alumina on aromatization performance of FCC light gasoline[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2460-2467.
宋绍彤, 李天舒, 鞠雅娜, 吕忠武, 吴培, 孙长宇, 段爱军. 不同类型氧化铝对FCC轻汽油芳构化性能影响[J]. 化工进展, 2022, 41(5): 2460-2467.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1216
样品 | 比表面积 | 微孔比表面积 | 外比表面积 | 孔容 | 介孔孔容 | 微孔孔容 | 孔径 |
---|---|---|---|---|---|---|---|
ZSM-5+A1 | 293.6 | 182.1 | 111.5 | 0.35 | 0.25 | 0.09 | 4.70 |
ZSM-5+A2 | 279.4 | 176.8 | 102.6 | 0.28 | 0.19 | 0.09 | 4.06 |
ZSM-5+A3 | 270.9 | 167.7 | 103.2 | 0.32 | 0.23 | 0.09 | 4.66 |
样品 | 比表面积 | 微孔比表面积 | 外比表面积 | 孔容 | 介孔孔容 | 微孔孔容 | 孔径 |
---|---|---|---|---|---|---|---|
ZSM-5+A1 | 293.6 | 182.1 | 111.5 | 0.35 | 0.25 | 0.09 | 4.70 |
ZSM-5+A2 | 279.4 | 176.8 | 102.6 | 0.28 | 0.19 | 0.09 | 4.06 |
ZSM-5+A3 | 270.9 | 167.7 | 103.2 | 0.32 | 0.23 | 0.09 | 4.66 |
样品 | 酸量(200℃)/μmol·g -1 | 酸量(350℃)/μmol·g -1 | |||||||
---|---|---|---|---|---|---|---|---|---|
L | B | L+B | B/L | L | B | L+B | B/L | ||
ZSM-5+A1 | 125.3 | 323.7 | 449.0 | 2.6 | 48.8 | 185.3 | 234.0 | 3.8 | |
ZSM-5+A2 | 114.0 | 276.3 | 390.3 | 2.4 | 46.8 | 152.0 | 198.8 | 3.2 | |
ZSM-5+A3 | 161.5 | 326.1 | 487.6 | 2.0 | 81.2 | 125.7 | 206.9 | 1.54 | |
ZSM-5 | 81.3 | 647.3 | 728.6 | 8.0 | 50.1 | 400.8 | 450.9 | 8.0 |
样品 | 酸量(200℃)/μmol·g -1 | 酸量(350℃)/μmol·g -1 | |||||||
---|---|---|---|---|---|---|---|---|---|
L | B | L+B | B/L | L | B | L+B | B/L | ||
ZSM-5+A1 | 125.3 | 323.7 | 449.0 | 2.6 | 48.8 | 185.3 | 234.0 | 3.8 | |
ZSM-5+A2 | 114.0 | 276.3 | 390.3 | 2.4 | 46.8 | 152.0 | 198.8 | 3.2 | |
ZSM-5+A3 | 161.5 | 326.1 | 487.6 | 2.0 | 81.2 | 125.7 | 206.9 | 1.54 | |
ZSM-5 | 81.3 | 647.3 | 728.6 | 8.0 | 50.1 | 400.8 | 450.9 | 8.0 |
项目 | 原料 | 催化剂样品 | |||
---|---|---|---|---|---|
FCC轻汽油 | La/ZSM-5+A1 | La/ZSM-5+A2 | La/ZSM-5+A3 | ||
在产品族组成 | |||||
正构烷烃 | 5.85 | 9.02 | 9.1 | 10.32 | |
异构烷烃 | 44.51 | 52.23 | 51.97 | 55.02 | |
烯烃 | 45.49 | 30.51 | 30.22 | 27.31 | |
环烷烃 | 3.52 | 5.96 | 6.02 | 3.98 | |
芳烃 | 0.63 | 2.29 | 2.69 | 3.38 | |
正构烷烃增幅(体积分数)/% | 3.17 | 3.25 | 4.47 | ||
异构烷烃增幅(体积分数)/% | 7.72 | 7.46 | 10.51 | ||
烯烃降幅(体积分数)/% | 14.98 | 15.27 | 18.18 | ||
芳烃增幅(体积分数)/% | 1.66 | 2.06 | 2.75 | ||
RON | 93.49 | 87.77 | 88.11 | 88.39 | |
?RON | -5.72 | -5.38 | -5.1 |
项目 | 原料 | 催化剂样品 | |||
---|---|---|---|---|---|
FCC轻汽油 | La/ZSM-5+A1 | La/ZSM-5+A2 | La/ZSM-5+A3 | ||
在产品族组成 | |||||
正构烷烃 | 5.85 | 9.02 | 9.1 | 10.32 | |
异构烷烃 | 44.51 | 52.23 | 51.97 | 55.02 | |
烯烃 | 45.49 | 30.51 | 30.22 | 27.31 | |
环烷烃 | 3.52 | 5.96 | 6.02 | 3.98 | |
芳烃 | 0.63 | 2.29 | 2.69 | 3.38 | |
正构烷烃增幅(体积分数)/% | 3.17 | 3.25 | 4.47 | ||
异构烷烃增幅(体积分数)/% | 7.72 | 7.46 | 10.51 | ||
烯烃降幅(体积分数)/% | 14.98 | 15.27 | 18.18 | ||
芳烃增幅(体积分数)/% | 1.66 | 2.06 | 2.75 | ||
RON | 93.49 | 87.77 | 88.11 | 88.39 | |
?RON | -5.72 | -5.38 | -5.1 |
催化剂 | 产品分布及体积分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C6 | C7 | C8 | C9 | C10 | C11 | C12 | 合计 | |
La/ZSM-5+A1 | 0.643 | 0.235 | 0.380 | 0.513 | 0.388 | 0.129 | — | 2.29 |
La/ZSM-5+A2 | 0.585 | 0.154 | 0.521 | 0.625 | 0.597 | 0.210 | — | 2.69 |
La/ZSM-5+A3 | — | 0.220 | 0.936 | 1.220 | 0.690 | 0.229 | 0.081 | 3.38 |
催化剂 | 产品分布及体积分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C6 | C7 | C8 | C9 | C10 | C11 | C12 | 合计 | |
La/ZSM-5+A1 | 0.643 | 0.235 | 0.380 | 0.513 | 0.388 | 0.129 | — | 2.29 |
La/ZSM-5+A2 | 0.585 | 0.154 | 0.521 | 0.625 | 0.597 | 0.210 | — | 2.69 |
La/ZSM-5+A3 | — | 0.220 | 0.936 | 1.220 | 0.690 | 0.229 | 0.081 | 3.38 |
1 | 柯明, 朱坤磊, 宋昭峥, 等. ZSM-5沸石和L沸石对FCC汽油芳构化降烯烃性能比较[J]. 石油化工高等学校学报, 2006, 19(1): 53-57. |
KE Ming, ZHU Kunlei, SONG Zhaozheng, et al. Comparison of performance to removing olefins in FCC gasoline by aromatization between ZSM-5 zeolite and L zeolite[J]. Journal of Petrochemical Universities, 2006, 19(1): 53-57. | |
2 | 吴冰峰, 王子健, 马爱增, 等. 低碳烷烃芳构化反应机理研究进展[J]. 石油学报(石油加工), 2021, 37(3): 690-699. |
WU Bingfeng, WANG Zijian, MA Aizeng, et al. Research progress in the mechanism of light alkane aromatization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 690-699. | |
3 | 陈治平, 徐建, 鲍晓军. 低碳烯烃异构化/芳构化反应机理研究进展[J]. 化工进展, 2015, 34(3): 617-623. |
CHEN Zhiping, XU Jian, BAO Xiaojun. Studies on the reaction mechanism of light olefin isomerization and aromatization[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 617-623. | |
4 | 王晓, 霍东亮, 余济伟, 等. 催化裂化汽油芳构化降烯烃催化剂的改进研究[J]. 石油炼制与化工, 2013, 44(10): 65-70. |
WANG Xiao, HUO Dongliang, YU Jiwei, et al. Improvement of aromatization and olefin-reduction catalyst for FCC heavy gasoline[J]. Petroleum Processing and Petrochemicals, 2013, 44(10): 65-70. | |
5 | 盛学虎, 郑大洲, 刘俊, 等. 催化裂化汽油加氢改质催化剂的改进[J]. 工业催化, 2013, 21(12): 50-55. |
SHENG Xuehu, ZHENG Dazhou, LIU Jun, et al. Improvement of hydro-upgrading catalyst for FCC heavy gasoline[J]. Industrial Catalysis, 2013, 21(12): 50-55. | |
6 | 郭洪臣, 王祥生, 杨付, 等. 汽油芳构化降烯烃ZSM-5型催化剂的研究[J]. 分子催化, 2004, 18(2): 109-114. |
GUO Hongchen, WANG Xiangsheng, YANG Fu, et al. ZSM-5 zeolite catalyst for reduction of gasoline olefins via aromatization[J]. Journal of Molecular Catalysis, 2004, 18(2): 109-114. | |
7 | DUAN A J, GAO Z Y, HUO Q, et al. Preparation and evaluation of the composite containing USL zeolite-supported NiW catalysts for hydrotreating of FCC diesel[J]. Energy & Fuels, 2010, 24(2): 796-803. |
8 | MONTES DE C C, VILLA DE P A LUZ, RAMı́REZ-CORREDORES M M. Synthesis and characterization of cobalt modified LTL-type zeolite[J]. Applied Catalysis A: General, 2000, 197(1): 151-156. |
9 | 李靖如, 梁晓军, 詹予忠, 等. L沸石合成晶化区研究[J]. 郑州大学学报(工学版), 2003, 24(3): 72-74. |
LI Jingru, LIANG Xiaojun, ZHAN Yuzhong, et al. Study on crystallization field of L zeolite[J]. Journal of Zhengzhou University (Engineering Science), 2003, 24(3): 72-74. | |
10 | 祁晓岚, 李斌, 李士杰, 等. BEA/MOR两相共生分子筛的酸性及其催化性能[J]. 催化学报, 2006, 27(3): 228-232. |
QI Xiaolan, LI Bin, LI Shijie, et al. Acidity and catalytic performance of BEA/MOR intergrowth zeolites[J]. Chinese Journal of Catalysis, 2006, 27(3): 228-232. | |
11 | 刘维桥, 雷卫宁, 尚通明, 等. Ga改性的HZSM-5分子筛甲醇芳构化催化反应性能[J]. 化工进展, 2011, 30(12): 2637-2641. |
LIU Weiqiao, LEI Weining, SHANG Tongming, et al. Property of HZSM-5 catalysts promoted by Ga in methanol aromatization[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2637-2641. | |
12 | TZENG Y Z, CHANG C J, YANG M C, et al. Zn-based metal-organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol[J]. Catalysis Today, 2021, 375: 70-78. |
13 | BI C Y, WANG X, YOU Q, et al. Catalytic upgrading of coal pyrolysis volatiles by Ga-substituted mesoporous ZSM-5[J]. Fuel, 2020, 267: 117217. |
14 | VIEIRA S S, MAGRIOTIS Z M, GRAÇA I, et al. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO 4 2 - /La2O3 [J]. Catalysis Today, 2017, 279: 267-273. |
15 | 梁时语, 房玉俊, 辛晴, 等. 原位合成纳米Ga/Al-ZSM-5分子筛及其催化正己烷芳构化反应性能[J]. 化学与粘合, 2021, 43(3): 167-174. |
LIANG Shiyu, FANG Yujun, XIN Qing, et al. In-situ synthesis of nano Ga/Al-ZSM-5 zeolite and its catalytic performance in the n-hexane aromatization[J]. Chemistry and Adhesion, 2021, 43(3): 167-174. | |
16 | TOPSØE N Y, JOENSEN F, DEROUANE E G. IR studies of the nature of the acid sites of ZSM-5 zeolites modified by steaming[J]. Journal of Catalysis, 1988, 110(2): 404-406. |
17 | ZHAO X B, GUO X W, WANG X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst[J]. Fuel Processing Technology, 2007, 88(3): 237-241. |
18 | ZAKI M I, HASAN M A, AL-SAGHEER F A, et al. Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica-alumina versus silica and alumina[J]. Langmuir, 2000, 16(2): 430-436. |
19 | 张鹏, 刘坚, 喻昊, 等. Mg改性L分子筛负载Pt重整催化剂的制备及其石脑油芳构化性能[J]. 化工进展, 2019, 38(4): 1753-1757. |
ZHANG Peng, LIU Jian, YU Hao, et al. Preparation of Mg2+ modified zeolite L catalyst supported with Pt and its aromatization performance for naphtha catalytic reforming[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1753-1757. | |
20 | 张鹏, 刘坚, 崔佳, 等. Pt/CeL重整催化剂的制备及其石脑油芳构化性能[J]. 燃料化学学报, 2019, 47(3): 318-322. |
ZHANG Peng, LIU Jian, CUI Jia, et al. Preparation of Pt/CeL reforming catalyst and its performance in the aromatization of naphtha[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 318-322. | |
21 | SHAIKH I R, SHAIKH R A, SHAIKH A A, et al. H-ZSM-5 zeolite synthesis by sourcing silica from the wheat husk ash: characterization and application as a versatile heterogeneous catalyst in organic transformations including some multicomponent reactions[J]. Journal of Catalysts, 2015, 2015: 805714. |
22 | NARAYANAN S, VIJAYA J J, SIVASANKER S, et al. Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method[J]. Powder Technology, 2015, 274: 338-348. |
23 | JESUDOSS S K, JUDITH VIJAYA J, ANANCIA GRACE A, et al. Hierarchical ZSM-5 zeolite nanosurfaces with high porosity—Structural, morphological and textural investigations[C]//Recent Trends in Materials Science and Applications. Switzerland: Springer, 2017. |
24 | 陈俊霖, 赵基钢, 江洪波, 等. 原位红外研究噻吩在硫化后Co-Mo/γ-Al2O3催化剂上吸附行为[J]. 化工进展, 2020, 39(S2): 221-226. |
CHEN Junlin, ZHAO Jigang, JIANG Hongbo, et al. Adsorption behavior ofthiophene on Co-Mo/γ-Al2O3 catalystby in situ IR[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 221-226. | |
25 | 侯扬飞, 于明煊, 张娇玉, 等. 不同金属改性对ZSM-5分子筛催化正戊烷和甲醇共芳构化反应性能的影响[J]. 石油炼制与化工, 2019, 50(8): 46-51. |
HOU Yangfei, YU Mingxuan, ZHANG Jiaoyu, et al. Effect of modified ZSM-5 zeolite with different metals on n-pentane and methanol co-aromatization[J]. Petroleum Processing and Petrochemicals, 2019, 50(8): 46-51. | |
26 | GUISNET M, GNEP N S, AITTALEB D, et al. Conversion of light alkanes into aromatic hydrocarbons[J]. Applied Catalysis A: General, 1992, 87(2): 255-270. |
[1] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[2] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[3] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[4] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[5] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[6] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[7] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[8] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[9] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[10] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[11] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[12] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[13] | WU Yiheng, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Research progress of gallium modified HZSM-5 catalysts for aromatization of light alkanes [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5162-5178. |
[14] | ZHU Yihao, ZHAO Baihang, WANG Chun, ZHANG Yuqing, YANG Haishan. Humic acid adsorption removal by modified coal gangue-based zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5531-5537. |
[15] | GAO Shichao, WANG Shugang, HU Peiyu, ZHAO Yiming, WANG Jihong, SUN Yi, JIANG Shuang. Effect of zeolite packing height on thermal energy storage-release performance of reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5092-5100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |