Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2364-2371.DOI: 10.16085/j.issn.1000-6613.2021-1062
• Energy processes and technology • Previous Articles Next Articles
ZHANG Xuan1(), FAN Xinye1, WU Zhenyu1, ZHENG Lijun2(
)
Received:
2021-05-19
Revised:
2021-06-10
Online:
2022-05-24
Published:
2022-05-05
Contact:
ZHENG Lijun
通讯作者:
郑丽君
作者简介:
张轩(1987—),男,博士,工程师,研究方向为石油化工和新能源。E-mail:CLC Number:
ZHANG Xuan, FAN Xinye, WU Zhenyu, ZHENG Lijun. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
张轩, 樊昕晔, 吴振宇, 郑丽君. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
项目 | 成本 | |
---|---|---|
天然气制氢 | 煤制氢 | |
原料(煤炭/天然气)/CNY·m-3 | 0.838 | 0.6 |
氧气/CNY·m-3 | 0 | 0.21 |
辅助材料/CNY·m-3 | 0.014 | 0.043 |
燃料动力能耗/CNY·m-3 | 0.184 | 0.069 |
直接工资/CNY·m-3 | 0.012 | 0.012 |
制造费用/CNY·m-3 | 0.065 | 0.135 |
财务及管理费/CNY·m-3 | 0.029 | 0.06 |
体积成本(标准状态)/CNY·m-3 | 1.142 | 1.129 |
折算质量成本/ CNY·kg-1 | 12.8 | 12.64 |
单位价格(15%利润)/ CNY·kg-1 | 14.72 | 14.54 |
项目 | 成本 | |
---|---|---|
天然气制氢 | 煤制氢 | |
原料(煤炭/天然气)/CNY·m-3 | 0.838 | 0.6 |
氧气/CNY·m-3 | 0 | 0.21 |
辅助材料/CNY·m-3 | 0.014 | 0.043 |
燃料动力能耗/CNY·m-3 | 0.184 | 0.069 |
直接工资/CNY·m-3 | 0.012 | 0.012 |
制造费用/CNY·m-3 | 0.065 | 0.135 |
财务及管理费/CNY·m-3 | 0.029 | 0.06 |
体积成本(标准状态)/CNY·m-3 | 1.142 | 1.129 |
折算质量成本/ CNY·kg-1 | 12.8 | 12.64 |
单位价格(15%利润)/ CNY·kg-1 | 14.72 | 14.54 |
电解池 | 电解质 | 工作温度/℃ | 电解效率/% | 能耗/kWh·m-3 | 操作特征 | 运行维护 | 商业特点 |
---|---|---|---|---|---|---|---|
AWE | 20%~30%KOH/NaOH | 70~90 | 60~75 | 4.5~5.5 | 启停较快 | 有腐蚀液体,运维复杂,成本高 | 技术成熟,商业化程度高,投资少 |
PEM | PEM | 70~80 | 70~90 | 3.8~5.0 | 启停快 | 运维简单,成本低 | 国外已经商业化,国内小规模应用,投资高 |
SOEC | Y2O3/ZrO2 | 600~1000 | 85~100 | 2.6~3.6 | 启停不便 | 实验室研究为主,目前无运维要求 | 转化效率高,但高温限制材料选择,处于实验室研发阶段,尚未产业化 |
电解池 | 电解质 | 工作温度/℃ | 电解效率/% | 能耗/kWh·m-3 | 操作特征 | 运行维护 | 商业特点 |
---|---|---|---|---|---|---|---|
AWE | 20%~30%KOH/NaOH | 70~90 | 60~75 | 4.5~5.5 | 启停较快 | 有腐蚀液体,运维复杂,成本高 | 技术成熟,商业化程度高,投资少 |
PEM | PEM | 70~80 | 70~90 | 3.8~5.0 | 启停快 | 运维简单,成本低 | 国外已经商业化,国内小规模应用,投资高 |
SOEC | Y2O3/ZrO2 | 600~1000 | 85~100 | 2.6~3.6 | 启停不便 | 实验室研究为主,目前无运维要求 | 转化效率高,但高温限制材料选择,处于实验室研发阶段,尚未产业化 |
项目 | 成本 |
---|---|
每年折旧/CNY·m-3 | 0.65 |
每年运维/CNY·m-3 | 0.3 |
电费/CNY·m-3 | 1.5 |
体积成本(标准状态)/CNY·m-3 | 2.45 |
折算质量成本/CNY·kg-1 | 27.44 |
单位价格(15%利润)/CNY·kg-1 | 31.56 |
项目 | 成本 |
---|---|
每年折旧/CNY·m-3 | 0.65 |
每年运维/CNY·m-3 | 0.3 |
电费/CNY·m-3 | 1.5 |
体积成本(标准状态)/CNY·m-3 | 2.45 |
折算质量成本/CNY·kg-1 | 27.44 |
单位价格(15%利润)/CNY·kg-1 | 31.56 |
资源 | 产量/kt·a-1 | 氢气体积分数/% | 出厂价格/CNY·m-3 |
---|---|---|---|
焦炉煤气 | 7210 | 55~60 | 0.83~1.33 |
氯碱化工 | 810 | ≥98 | 1.2~1.8 |
丙烷脱氢 | 300 | ≥85 | 0.9~1.5 |
资源 | 产量/kt·a-1 | 氢气体积分数/% | 出厂价格/CNY·m-3 |
---|---|---|---|
焦炉煤气 | 7210 | 55~60 | 0.83~1.33 |
氯碱化工 | 810 | ≥98 | 1.2~1.8 |
丙烷脱氢 | 300 | ≥85 | 0.9~1.5 |
项目 | 成本/CNY·kg-1 |
---|---|
每年折旧 | 4.93 |
每年运营成本 | 10.96 |
单位成本 | 15.89 |
单位价格(20%利润) | 19.07 |
项目 | 成本/CNY·kg-1 |
---|---|
每年折旧 | 4.93 |
每年运营成本 | 10.96 |
单位成本 | 15.89 |
单位价格(20%利润) | 19.07 |
距离/km | 20MPa制氢成本/CNY·kg-1 | 50MPa制氢成本/CNY·kg-1 | |||||
---|---|---|---|---|---|---|---|
天然气 | 煤 | 电解水 | 天然气 | 煤 | 电解水 | ||
50 | 38.69 | 38.51 | 55.53 | 37.60 | 37.42 | 54.44 | |
100 | 41.59 | 41.41 | 58.43 | 38.24 | 38.06 | 55.08 | |
150 | 43.33 | 43.15 | 60.17 | 38.89 | 38.71 | 55.73 | |
200 | 45.08 | 44.90 | 61.92 | 39.54 | 39.36 | 56.38 | |
250 | 46.82 | 46.64 | 63.66 | 40.19 | 40.01 | 57.03 | |
300 | 48.57 | 48.39 | 65.41 | 40.84 | 40.66 | 57.68 | |
350 | 50.31 | 50.13 | 67.15 | 41.49 | 41.31 | 58.33 | |
400 | 52.05 | 51.87 | 68.89 | 42.13 | 41.95 | 58.97 | |
450 | 53.8 | 53.62 | 70.64 | 42.78 | 42.60 | 59.62 | |
500 | 55.54 | 55.36 | 72.38 | 43.43 | 43.25 | 60.27 |
距离/km | 20MPa制氢成本/CNY·kg-1 | 50MPa制氢成本/CNY·kg-1 | |||||
---|---|---|---|---|---|---|---|
天然气 | 煤 | 电解水 | 天然气 | 煤 | 电解水 | ||
50 | 38.69 | 38.51 | 55.53 | 37.60 | 37.42 | 54.44 | |
100 | 41.59 | 41.41 | 58.43 | 38.24 | 38.06 | 55.08 | |
150 | 43.33 | 43.15 | 60.17 | 38.89 | 38.71 | 55.73 | |
200 | 45.08 | 44.90 | 61.92 | 39.54 | 39.36 | 56.38 | |
250 | 46.82 | 46.64 | 63.66 | 40.19 | 40.01 | 57.03 | |
300 | 48.57 | 48.39 | 65.41 | 40.84 | 40.66 | 57.68 | |
350 | 50.31 | 50.13 | 67.15 | 41.49 | 41.31 | 58.33 | |
400 | 52.05 | 51.87 | 68.89 | 42.13 | 41.95 | 58.97 | |
450 | 53.8 | 53.62 | 70.64 | 42.78 | 42.60 | 59.62 | |
500 | 55.54 | 55.36 | 72.38 | 43.43 | 43.25 | 60.27 |
1 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书2020[R]. 2021. |
China Hydrogen Alliance. China hydrogen energy and fuel cell industry white paper 2020[R]. 2021. | |
2 | 王奕然, 曾令志, 娄舒洁, 等. 天然气制氢技术研究进展[J]. 石化技术与应用, 2019, 37(5): 361-366. |
WANG Yiran, ZENG Lingzhi, LOU Shujie, et al. Review of hydrogen production from natural gas[J]. Petrochemical Technology & Application, 2019, 37(5): 361-366. | |
3 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
4 | 张彩丽. 煤制氢与天然气制氢成本分析及发展建议[J]. 石油炼制与化工, 2018, 49(1): 94-98. |
ZHANG Caili. Cost analysis and development suggestion for hydrogen production from coal and natural gas[J]. Petroleum Processing and Petrochemicals, 2018, 49(1): 94-98. | |
5 | 苗军, 郭卫军. 氢能的生产工艺及经济性分析[J]. 能源化工, 2020, 41(6): 6-10. |
MIAO Jun, GUO Weijun. Analysis of production technology and economy of hydrogen energy[J]. Energy Chemical Industry, 2020, 41(6): 6-10. | |
6 | 单彤文, 宋鹏飞, 李又武, 等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工), 2020, 45(1): 85-90, 96. |
SHAN Tongwen, SONG Pengfei, LI Youwu, et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural Gas Chemical Industry, 2020, 45(1): 85-90, 96. | |
7 | 李家全, 刘兰翠, 李小裕, 等. 中国煤炭制氢成本及碳足迹研究[J]. 中国能源, 2021, 43(1): 51-54. |
LI Jiaquan, LIU Lancui, LI Xiaoyu, et al. Study on the cost and carbon footprint of hydrogen production from coal in China[J]. Energy of China, 2021, 43(1): 51-54. | |
8 | 沈威, 杨炜樱. 考虑碳排放的化石能源和电解水制氢成本[J]. 煤气与热力, 2020, 40(3): 30-33, 43. |
SHEN Wei, YANG Weiying. Cost of hydrogen production from fossil energy and electrolyzed water considering carbon emissions[J]. Gas & Heat, 2020, 40(3): 30-33, 43. | |
9 | URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
10 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
11 | 杜泽学, 慕旭宏. 水电解技术发展及在绿氢生产中的应用[J]. 石油炼制与化工, 2021, 52(2): 102-110. |
DU Zexue, MU Xuhong. Development of water electrolysis technology and its application in green hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(2): 102-110. | |
12 | 王周. 天然气制氢、甲醇制氢与水电解制氢的经济性对比探讨[J]. 天然气技术与经济, 2016, 10(6): 47-49, 83. |
WANG Zhou. Discussion on economic comparison of hydrogen production by natural gas, methanol and water electrolysis[J]. Natural Gas Technology and Economy, 2016, 10(6): 47-49, 83. | |
13 | 韩红梅, 杨铮, 王敏, 等. 我国氢气生产和利用现状及展望[J]. 中国煤炭, 2021, 47(5): 59-63. |
HAN Hongmei, YANG Zheng, WANG Min, et al. The current situation and prospect of hydrogen production and utilization in China[J]. China Coal, 2021, 47(5): 59-63. | |
14 | 中国电动汽车百人会. 中国氢能产业发展报告2020[R]. 2020. |
China EV100. China Hydrogen Energy Industry Development Report 2020[R]. 2020. | |
15 | 李建林, 李光辉, 马速良,等. 氢能储运技术现状及其在电力系统中的典型应用[J]. 现代电力, 2021, 38(5): 535-545. |
LI Jianlin, LI Guanghui, MA Suliang, et al. An overview on hydrogen energy storage and transportation technology and its typical application in power system[J]. Modern Electric Power, 2021, 38(5): 535-545. | |
16 | 陈良, 周楷淼, 赖天伟, 等. 液氢为核心的氢燃料供应链[J]. 低温与超导, 2020, 48(11): 1-7. |
CHEN Liang, ZHOU Kaimiao, LAI Tianwei, et al. Hydrogen fuel supply chain based on liquid hydrogen[J]. Cryogenics & Superconductivity, 2020, 48(11): 1-7. | |
17 | 尚娟,鲁仰辉,郑津洋, 等. 掺氢天然气管道输送研究进展和挑战[J]. 化工进展, 2021, 40(10): 5499-5505. |
SHANG Juan, LU Yanghui, ZHENG Jinyang, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505. | |
18 | 周承商, 黄通文, 刘煌, 等. 混氢天然气输氢技术研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 31-43. |
ZHOU Chengshang, HUANG Tongwen, LIU Huang, et al. Research progress of hydrogen transport technology for blended hydrogen natural gas[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 31-43. | |
19 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
LI Luling, FAN Shuanshi, CHEN Qiuxiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
20 | 刘云,景朝俊,马则群, 等. 固体储氢新材料的研究进展[J].化工新型材料, 2021, 49(9): 11-14, 19. |
LIU Yun, JING Chaojun, MA Zequn, et al. Research progress on new solid-state hydrogen storage material[J]. New Chemical Materials, 2021, 49(9): 11-14, 19. | |
21 | 何广利, 许壮, 董辉, 等. 35 MPa/70 MPa加氢站运行优化技术分析[J]. 当代化工, 2020, 49(11): 2625-2628. |
HE Guangli, XU Zhuang, DONG Hui, et al. Analysis on 35MPa/70MPa hydrogen refueling station process optimization technologies[J]. Contemporary Chemical Industry, 2020, 49(11): 2625-2628. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[4] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[5] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[6] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[9] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[10] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[11] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[12] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[13] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[14] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[15] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2642
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1088
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |