Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1309-1317.DOI: 10.16085/j.issn.1000-6613.2022-0244
• Renewable energy development and usage • Previous Articles Next Articles
WANG Jijie1(), HAN Zhe1, CHEN Siyu1,2, TANG Chizhou1,2, SHA Feng1,3, TANG Shan1,2, YAO Tingting1, LI Can1()
Received:
2022-02-16
Revised:
2022-03-04
Online:
2022-03-28
Published:
2022-03-23
Contact:
LI Can
王集杰1(), 韩哲1, 陈思宇1,2, 汤驰洲1,2, 沙峰1,3, 唐珊1,2, 姚婷婷1, 李灿1()
通讯作者:
李灿
作者简介:
王集杰(1985—),男,研究员,研究方向为液态阳光及二氧化碳资源化利用。E-mail:基金资助:
CLC Number:
WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317.
王集杰, 韩哲, 陈思宇, 汤驰洲, 沙峰, 唐珊, 姚婷婷, 李灿. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0244
成本 | 工艺名称 | 煤制甲醇 /×108CNY | 液态阳光甲醇 /×108CNY |
---|---|---|---|
固定资产 | 造气 | 6.60 | |
空分 | 4.20 | ||
变换 | 0.84 | ||
净化 | 1.88 | ||
电解水装置 | 5.70① | ||
其他/公用工程等 | 21.08 | 14.05② | |
小计 | 34.60 | 19.75 | |
运行成本 | 煤消耗 | 9.00③ | |
空分 | 1.80 | ||
制氢电耗 | 9.11① | ||
二氧化碳的捕获 | 1.34④ | ||
其他 | 1.50 | 1.50 | |
小计 | 12.30 | 11.95 | |
甲醇成本 | 2627CNY/t | 2321CNY/t | |
考虑碳税成本 | 2777CNY/t⑤ | 2261CNY/t⑥ |
成本 | 工艺名称 | 煤制甲醇 /×108CNY | 液态阳光甲醇 /×108CNY |
---|---|---|---|
固定资产 | 造气 | 6.60 | |
空分 | 4.20 | ||
变换 | 0.84 | ||
净化 | 1.88 | ||
电解水装置 | 5.70① | ||
其他/公用工程等 | 21.08 | 14.05② | |
小计 | 34.60 | 19.75 | |
运行成本 | 煤消耗 | 9.00③ | |
空分 | 1.80 | ||
制氢电耗 | 9.11① | ||
二氧化碳的捕获 | 1.34④ | ||
其他 | 1.50 | 1.50 | |
小计 | 12.30 | 11.95 | |
甲醇成本 | 2627CNY/t | 2321CNY/t | |
考虑碳税成本 | 2777CNY/t⑤ | 2261CNY/t⑥ |
煤制甲醇 | 液态阳光甲醇 | ||
---|---|---|---|
煤炭价格 /CNY·t-1 | 甲醇成本 /CNY·t-1 | 可再生能源发电 成本/CNY·(kW·h-1) | 甲醇成本 /CNY·t-1 |
500 | 1800 | 0.1 | 1600 |
1000 | 2600 | 0.2 | 2600 |
1500 | 3300 | 0.3 | 3600 |
2000 | 4100 | 0.4 | 4600 |
煤制甲醇 | 液态阳光甲醇 | ||
---|---|---|---|
煤炭价格 /CNY·t-1 | 甲醇成本 /CNY·t-1 | 可再生能源发电 成本/CNY·(kW·h-1) | 甲醇成本 /CNY·t-1 |
500 | 1800 | 0.1 | 1600 |
1000 | 2600 | 0.2 | 2600 |
1500 | 3300 | 0.3 | 3600 |
2000 | 4100 | 0.4 | 4600 |
1 | STOCKER T F, QIN D, G-K PLATTNER, et al. Climate change 2013: the physical science basis[R]. New York: Intergovernmental Panel on Climate Change, 2014. |
2 | OLAH George A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
3 | SHIH Choon Fong, ZHANG Tao, LI Jinghai, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
4 | ZHANG Jian, WANG Tao, LIU Pan, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications, 2017, 8: 15437. |
5 | ZHANG Jian, WANG Tao, LIU Pan, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy & Environmental Science, 2016, 9(9): 2789-2793. |
6 | ZHANG Zhicheng, LIU Guigao, CUI Xiaoya, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): e1801741. |
7 | YE Sheng, DING Chunmei, LIU Mingyao, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50): e1902069. |
8 | ZOU Xiaoxin, ZHANG Yu. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
9 | KING Laurie A, HUBERT McKenzie A, CAPUANO Christopher, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature Nanotechnology, 2019, 14(11): 1071-1074. |
10 | LI Ailong, KONG Shuang, GUO Chenxi, et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nature Catalysis, 2022, 5(2): 109-118. |
11 | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
12 | LI Ailong, SUN Yimeng, YAO Tingting, et al. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen[J]. Chemistry, 2018, 24(69): 18334-18355. |
13 | NAKAMURA J, CHOI Y, FUJITANI T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 2003, 22(3/4): 277-285. |
14 | KUNKES Edward L, STUDT Felix, Frank ABILD-PEDERSEN, et al. Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? [J]. Journal of Catalysis, 2015, 328: 43-48. |
15 | FICHTL Matthias B, SCHLERETH David, JACOBSEN Nikolas, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Applied Catalysis A: General, 2015, 502: 262-270. |
16 | WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290. |
17 | WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance MaZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. |
18 | YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7817-7825. |
19 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306. |
20 | SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12: 1-6. |
21 | MARTIN Oliver, MARTÍN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265. |
22 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
23 | KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. |
24 | KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang, et al. Response to comment on “active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8210. |
25 | BEHRENS Malte, STUDT Felix, KASATKIN Igor, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
26 | LUNKENBEIN Thomas, SCHUMANN Julia, BEHRENS Malte, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548. |
27 | NAKAMURA Junji, FUJITANI Tadahiro, KULD Sebastian, et al. Comment on “active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8074. |
28 | BANSODE Atul, TIDONA Bruno, ROHR Philipp Rudolf VON, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catalysis Science & Technology, 2013, 3(3): 767-778. |
29 | BAN Hongyan, LI Congming, ASAMI Kenji, et al. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2 [J]. Catalysis Communications, 2014, 54: 50-54. |
30 | NOMURA Naofumi, TAGAWA Tomohiko, GOTO Shigeo. Effect of acid-base properties on copper catalysts for hydrogenation of carbon dioxide[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 21-25. |
31 | PHONGAMWONG Thanaree, CHANTAPRASERTPORN Usanee, WITOON Thongthai, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents[J]. Chemical Engineering Journal, 2017, 316: 692-703. |
32 | ARENA F, MEZZATESTA G, ZAFARANA G, et al. How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol[J]. Catalysis Today, 2013, 210: 39-46. |
33 | Mei Kee KOH, KHAVARIAN Mehrnoush, CHAI Siang Piao, et al. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9334-9342. |
34 | WANG Guannan, CHEN Limin, SUN Yuhai, et al. Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry[J]. RSC Advances, 2015, 5(56): 45320-45330. |
35 | TISSERAUD Céline, COMMINGES Clément, HABRIOUX Aurélien, et al. Cu-ZnO catalysts for CO2 hydrogenation to methanol: morphology change induced by ZnO lixiviation and its impact on the active phase formation[J]. Molecular Catalysis, 2018, 446: 98-105. |
36 | LI Molly M J, CHEN Chunping, Ayvalı TUĞÇE, et al. CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors[J]. ACS Catalysis, 2018, 8(5): 4390-4401. |
37 | ZHANG Chen, YANG Haiyan, GAO Peng, et al. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method[J]. Journal of CO2 Utilization, 2017, 17: 263-272. |
38 | BEHRENS Malte. Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—From the understanding of the well known recipes to new materials[J]. Catalysis Today, 2015, 246: 46-54. |
39 | FREI M S, CAPDEVILA-CORTADA M, GARCÍA-MUELAS R, et al. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321. |
40 | DANG Shanshan, QIN Bin, YANG Yong, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25): eaaz2060. |
41 | TSOUKALOU Athanasia, ABDALA Paula M, STOIAN Dragos, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study[J]. Journal of the American Chemical Society, 2019, 141(34): 13497-13505. |
42 | RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497. |
43 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study[J]. Journal of Catalysis, 2014, 317: 44-53. |
44 | HAN Zhe, TANG Chizhou, WANG Jijie, et al. Atomically dispersed Pt n + species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2021, 394: 236-244. |
45 | SUN Kaihang, RUI Ning, ZHANG Zhitao, et al. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chemistry, 2020, 22(15): 5059-5066. |
46 | WANG Jing, SUN Kaihang, JIA Xinyu, et al. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catalysis Today, 2021, 365: 341-347. |
47 | RUI Ning, ZHANG Feng, SUN Kaihang, et al. Hydrogenation of CO2 to methanol on a Au δ +-In2O3- x catalyst[J]. ACS Catalysis, 2020, 10(19): 11307-11317. |
48 | JIA Xinyu, SUN Kaihang, WANG Jing, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. Journal of Energy Chemistry, 2020, 50: 409-415. |
49 | BAVYKINA Anastasiya, YARULINA Irina, ABDULGHANI Abdullah J AL, et al. Turning a methanation Co catalyst into an In-Co methanol producer[J]. ACS Catalysis, 2019, 9(8): 6910-6918. |
50 | HAN Zhe, TANG Chizhou, SHA Feng, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. Journal of Catalysis, 2021, 396: 242-250. |
51 | HALPER Mark. Forget storing carbon; re-use it: a company in Iceland is turning CO2 into methanol to power cars[J]. Renewable Energy Focus, 2011, 12(1): 56-58. |
52 | SINGH Surinder P, HAO Pingjiao, LIU Xiao, et al. Large-scale affordable CO2 capture is possible by 2030[J]. Joule, 2019, 3(9): 2154-2164. |
53 | 姬加良. 煤与不同原料重整气化制甲醇对CO2排放的影响[J]. 能源科技, 2020, 18(2): 62-66. |
JI Jialiang. Effect of reforming gasification to methanol by coal and different raw materials on carbon dioxide emission[J]. Energy Science and Technology, 2020, 18(2): 62-66. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | LIU Chang, LIU Zhongwen. Perspective on the one-step CO2 hydrogenation to dimethyl ether [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1115-1120. |
[3] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
[4] | ZHENG Xuewen, ZHAO Rui, WU Jiazhe, WANG Menglong, CHEN Yubin. Design and modification of electrocatalysts for seawater splitting: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5800-5810. |
[5] | ZHOU Ying, LI Yeqing, ZHOU Hongjun, XU Chunming. Exploration of bio-energy in promoting rural revitalization in China [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6195-6199. |
[6] | ZHAO Yu, ZHOU Fei, ZHANG Weiwei, LI Ning, LI Shiyou, LI Guixian. Research progress of cobalt phosphide materials in the field of electrochemical energy [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2188-2205. |
[7] | CHU Tingting,WANG Hui,FENG Caixia,MAO Liqun. Progress of photocatalysts for water splitting by solar energy [J]. Chemical Industry and Engineering Progree, 2012, 31(10): 2228-2233. |
[8] | GUO Xiaoming,MAO Dongsen,LU Guanzhong,WANG Song. Progress in catalysts for methanol synthesis from CO2 hydrogenation [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 477-488. |
[9] |
GUO Xinbin,QIAO Qingdong.
Research progress of hydrogen production on photocatalysts for water splitting [J]. Chemical Industry and Engineering Progree, 2006, 25(7): 729-. |
[10] | JIANG Qin,ZHANG Shouchen,WANG Liqiu,LIU Changhou. Preparation of perovskite photocatalysts and its applications progress [J]. Chemical Industry and Engineering Progree, 2006, 25(2): 136-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |