Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1298-1308.DOI: 10.16085/j.issn.1000-6613.2021-2028
• Carbon dioxide capture, storage and utilization • Previous Articles Next Articles
LI Wen1(), ZHAN Guowu2(), HUANG Jiale3, LI Qingbiao3
Received:
2021-09-27
Revised:
2021-12-17
Online:
2022-03-28
Published:
2022-03-23
Contact:
ZHAN Guowu
通讯作者:
詹国武
作者简介:
李雯(1988—),女,博士,研究方向为CO2资源化利用。E-mail:基金资助:
CLC Number:
LI Wen, ZHAN Guowu, HUANG Jiale, LI Qingbiao. Synthesis of ZnZrO x &bio-SAPO-34 bifunctional catalysts derived from metal organic frameworks and rice husk template for CO2 hydrogenation to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1298-1308.
李雯, 詹国武, 黄加乐, 李清彪. 基于金属有机骨架和稻谷壳前体构筑ZnZrO x &bio-SAPO-34双功能催化剂及CO2加氢制低碳烯烃[J]. 化工进展, 2022, 41(3): 1298-1308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2028
32 | LI W, WANG K C, HUANG J J, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
33 | LI G, WANG B D, SUN Q, et al. Novel synthesis of fly-ash-derived Cu-loaded SAPO-34 catalysts and their use in selective catalytic reduction of NO with NH3 [J]. Green Energy & Environment, 2019, 4(4): 470-482. |
34 | CHEN J Y, WANG X, WU D K, et al. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: strategy for product distribution[J]. Fuel, 2019, 239: 44-52. |
35 | BAKHTIAR S U H, ALI S, DONG Y L, et al. Selective synthesis of the SAPO-5 and SAPO-34 mixed phases by controlling Si/Al ratio and their excellent catalytic methanol to olefins performance[J]. Journal of Porous Materials, 2018, 25(5): 1455-1461. |
36 | RAVI M, SUSHKEVICH V L, BOKHOVEN J A VAN. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19(10): 1047-1056. |
37 | DAI W L, WANG X, WU G J, et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of Brønsted acid sites and framework structures[J]. ACS Catalysis, 2011, 1(4): 292-299. |
38 | DAI W L, SCHEIBE M, GUAN N J, et al. Fate of Brønsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34[J]. ChemCatChem, 2011, 3(7): 1130-1133. |
39 | CHEN J R, LI J Z, YUAN C Y, et al. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catalysis Science & Technology, 2014, 4(9): 3268. |
40 | WANG M H, WANG Z W, LIU S H, et al. Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions[J]. Journal of Catalysis, 2021, 394: 181-192. |
41 | WANG M H, KANG J C, XIONG X W, et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catalysis Today, 2021, 371: 85-92. |
42 | WESTGÅRD ERICHSEN M, SVELLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catalysis Today, 2013, 215: 216-223. |
43 | YE R P, DING J, GONG W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10(1): 5698. |
1 | GOUD D, GUPTA R, MALIGAL-GANESH R, et al. Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO2 [J]. ACS Catalysis, 2020, 10(23): 14258-14282. |
2 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
44 | CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3(2): 334-347. |
45 | WANG J Y, ZHANG A F, JIANG X, et al. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. Journal of CO2 Utilization, 2018, 27: 81-88. |
46 | ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
47 | WANG Y, TAN L, TAN M H, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis, 2019, 9(2): 895-901. |
48 | WANG S, ZHANG L, ZHANG W Y, et al. Selective conversion of CO2 into propene and butene[J]. Chem, 2020, 6(12): 3344-3363. |
49 | LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2): 570-583. |
50 | LI Z L, WANG J J, QU Y Z, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
51 | WANG Y H, WANG G Y, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angewandte Chemie International Edition, 2021, 60(32): 17735-17743. |
3 | ALVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
4 | MA Z Q, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catalysis, 2019, 9(3): 2639-2656. |
5 | 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学, 2020, 50(7): 743-755. |
CHENG K, ZHANG Q H, KANG J C, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Scientia Sinica (Chimica),2020, 50(7): 743-755. | |
6 | LIU X L, WANG M H, YIN H R, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower Olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
7 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
8 | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
9 | YANG H Y, ZHANG C, GAO P, et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catalysis Science & Technology, 2017, 7(20): 4580-4598. |
10 | DANG S S, GAO P, LIU Z Y, et al. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. Journal of Catalysis, 2018, 364: 382-393. |
11 | WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: are olefins themselves the dominating hydrocarbon pool species?[J]. Journal of Catalysis, 2013, 301: 8-19. |
12 | SUN Q M, WANG N, GUO G Q, et al. Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance[J]. Journal of Materials Chemistry A, 2015, 3(39): 19783-19789. |
13 | ZHANG Q, YU J H, CORMA A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
14 | TIAN C C, ZHU X, ABNEY C W, et al. Toward the design of a hierarchical perovskite support: ultra-sintering-resistant gold nanocatalysts for CO oxidation[J]. ACS Catalysis, 2017, 7(5): 3388-3393. |
15 | RUTKOWSKA M, MACINA D, MIROCHA-KUBIEŃ N, et al. Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol[J]. Applied Catalysis B: Environmental, 2015, 174/175: 336-343. |
16 | ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333. |
17 | BAI R S, SONG Y, LI Y, et al. Creating hierarchical pores in zeolite catalysts[J]. Trends in Chemistry, 2019, 1(6): 601-611. |
18 | ZHOU H, XU J, LIU X H, et al. Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation[J]. Advanced Functional Materials, 2018, 28(24): 1705309. |
19 | 姜霞,李雯,郭云龙,等. 生物模板法制备金属氧化物及其催化应用研究进展[J]. 化工进展, 2019, 38(1): 485-494. |
JIANG X, LI W, GUO Y L, et al. Progress on bio-templated synthesis of metal oxides and their catalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 485-494. | |
20 | GOODWIN W B, SHIN D, SABO D, et al. Tunable multimodal adhesion of 3D, nanocrystalline CoFe2O4 pollen replicas[J]. Bioinspiration & Biomimetics, 2017, 12(6): 066009. |
21 | CHEN L, TANG X W, XIE P W, et al. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction[J]. Chemistry of Materials, 2018, 30(3): 799-806. |
22 | ANDERSON M W, HOLMES S M, HANIF N, et al. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition, 2000, 39(15): 2707-2710. |
23 | LIU X, ZHAN G W, WU J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173. |
24 | JIANG X, LIU Y, HAO H J, et al. Rape pollen-templated synthesis of C,N self-doped hierarchical TiO2 for selective hydrogenation of 1,3-butadiene[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 882-888. |
25 | GUO Y L, YANG D P, LIU M H, et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst[J]. Journal of Materials Chemistry A, 2019, 7(15): 8832-8844. |
26 | 钱俊青. 稻谷壳的深加工技术[J]. 中国商办工业, 2001, 13(1): 44-46. |
QIAN J Q. Deep processing technology of rice husk[J]. China Commercial Industry, 2001, 13(1): 44-46. | |
27 | LIOU T H. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Science and Engineering: A, 2004, 364(1/2): 313-323. |
28 | YELETSKY P M, YAKOVLEV V A, MEL’GUNOV M S, et al. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk[J]. Microporous and Mesoporous Materials, 2009, 121(1/2/3): 34-40. |
29 | LIANG Y R, YANG C, DONG H W, et al. Facile synthesis of highly porous carbon from rice husk[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7111-7117. |
30 | YANG D L, DU B, YAN Y X, et al. Rice-husk-templated hierarchical porous TiO2/SiO2 for enhanced bacterial removal[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2377-2385. |
31 | PASTOR A, BALBUENA J, CRUZ-YUSTA M, et al. ZnO on rice husk: a sustainable photocatalyst for urban air purification[J]. Chemical Engineering Journal, 2019, 368: 659-667. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[9] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[10] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[11] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |