Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1163-1175.DOI: 10.16085/j.issn.1000-6613.2021-2244
• Carbon dioxide capture, storage and utilization • Previous Articles Next Articles
YUE Chengguang(), JI Wenhao, FENG Bangman, WANG Meiyan, MA Xinbin()
Received:
2021-11-02
Revised:
2021-12-21
Online:
2022-03-28
Published:
2022-03-23
Contact:
MA Xinbin
通讯作者:
马新宾
作者简介:
岳成光(1996—),男,博士研究生,研究方向为二氧化碳高值转化。E-mail:基金资助:
CLC Number:
YUE Chengguang, JI Wenhao, FENG Bangman, WANG Meiyan, MA Xinbin. Research progress in the carboxylation of carbon dioxide with unsaturated hydrocarbons to acrylic acid and its derivatives[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1163-1175.
岳成光, 姬文豪, 冯帮满, 王美岩, 马新宾. 二氧化碳与不饱和烃制备丙烯酸及其衍生物研究进展[J]. 化工进展, 2022, 41(3): 1163-1175.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2244
1 | ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
2 | CHEN Y, MU T C. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574. |
3 | WANG M Y, JIN X, WANG X F, et al. Copper-catalyzed and proton-directed selective hydroxymethylation of alkynes with CO2 [J]. Angewandte Chemie International Edition, 2021, 60(8): 3984-3988. |
4 | SUN D L, YAMADA Y, SATO S, et al. Glycerol as a potential renewable raw material for acrylic acid production[J]. Green Chemistry, 2017, 19(14): 3186-3213. |
5 | 张志鑫, 王业红, 张超锋, 等. 丙烯酸催化合成新进展[J]. 化工进展, 2021, 40(4): 2016-2033. |
ZHANG Zhixin, WANG Yehong, ZHANG Chaofeng, et al. New advances in catalytic synthesis of acrylic acid[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2016-2033. | |
6 | 荆涛. 丙烯酸甲酯的绿色合成工艺[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
JING Tao. Green process for preparation of methyl acrylate[D]. Harbin: Harbin Institute of Technology, 2012. | |
7 | HOLLERING M, DUTTA B, KÜHN F E. Transition metal mediated coupling of carbon dioxide and ethene to acrylic acid/acrylates[J]. Coordination Chemistry Reviews, 2016, 309: 51-67. |
8 | GUO C X, YU B, MA R, et al. Metal-promoted carboxylation of alkynes/allenes with carbon dioxide[J]. Current Green Chemistry, 2015, 2(1): 14-25. |
9 | HOBERG H, SCHAEFER D, BURKHART G. Oxanickelacyclopenten-derivate, ein neuer typ vielseitig verwendbarer synthone[J]. Journal of Organometallic Chemistry, 1982, 228(1): C21-C24. |
10 | HOBERG H, PERES Y, MILCHEREIT A. C-C-Verknüpfund von alkenen mit CO2 an nickel(O); herstellung von zimtsäure aus styrol[J]. Journal of Organometallic Chemistry, 1986, 307(2): C38-C40. |
11 | HOBERG H, PERES Y, KRÜGER C, et al. A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity[J]. Angewandte Chemie International Edition, 1987, 26(8): 771-773. |
12 | FISCHER R, LANGER J, MALASSA A, et al. A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex[J]. Chemical Communications, 2006(23): 2510-2512. |
13 | GRAHAM D C, MITCHELL C, BRUCE M I, et al. Production of acrylic acid through nickel-mediated coupling of ethylene and carbon dioxide—A DFT study[J]. Organometallics, 2007, 26(27): 6784-6792. |
14 | BRUCKMEIER C, LEHENMEIER M W, REICHARDT R, et al. Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones[J]. Organometallics, 2010, 29(10): 2199-2202. |
15 | LEE S Y T, COKOJA M, DREES M, et al. Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide[J]. ChemSusChem, 2011, 4(9): 1275-1279. |
16 | LEJKOWSKI M L, LINDNER R, KAGEYAMA T, et al. The first catalytic synthesis of an acrylate from CO2 and an alkene—A rational approach[J]. Chemistry: A European Journal, 2012, 18(44): 14017-14025. |
17 | JIN D, SCHMEIER T J, WILLIARD P G, et al. Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene[J]. Organometallics, 2013, 32(7): 2152-2159. |
18 | HENDRIKSEN C, PIDKO E A, YANG G, et al. Catalytic formation of acrylate from carbon dioxide and ethene[J]. Chemistry: A European Journal, 2014, 20(38): 12037-12040. |
19 | HUGUET N, JEVTOVIKJ I, GORDILLO A, et al. Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of α,β-unsaturated carboxylic acid salts[J]. Chemistry: A European Journal, 2014, 20(51): 16858-16862. |
20 | JEVTOVIKJ I, MANZINI S, HANAUER M, et al. Investigations on the catalytic carboxylation of olefins with CO2 towards α,β-unsaturated carboxylic acid salts: characterization of intermediates and ligands as well as substrate effects[J]. Dalton Transactions, 2015, 44(24): 11083-11094. |
21 | STIEBER S C, HUGUET N, KAGEYAMA T, et al. Acrylate formation from CO2 and ethylene: catalysis with palladium and mechanistic insight[J]. Chemical Communications, 2015, 51(54): 10907-10909. |
22 | MANZINI S, HUGUET N, TRAPP O, et al. Palladium- and Nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process[J]. European Journal of Organic Chemistry, 2015, 2015(32): 7122-7130. |
23 | MANZINI S, CADU A, SCHMIDT A C, et al. Enhanced activity and recyclability of palladium complexes in the catalytic synthesis of sodium acrylate from carbon dioxide and ethylene[J]. ChemCatChem, 2017, 9(12): 2269-2274. |
24 | ALVAREZ R, CARMONA E, COLE-HAMILTON D J, et al. Formation of acrylic acid derivatives from the reaction of carbon dioxide with ethylene complexes of molybdenum and tungsten[J]. Journal of the American Chemical Society, 1985, 107(19): 5529-5531. |
25 | ALVAREZ R, CARMONA E, GALINDO A, et al. Formation of carboxylate complexes from the reactions of carbon dioxide with ethylene complexes of molybdenum and tungsten. X-ray and neutron diffraction studies[J]. Organometallics, 1989, 8(10): 2430-2439. |
26 | GALINDO A, PASTOR A, PEREZ P J, et al. Bis(ethylene) complexes of molybdenum and tungsten and their reactivity toward carbon dioxide. New examples of acrylate formation by coupling of ethylene and carbon dioxide[J]. Organometallics, 1993, 12(11): 4443-4451. |
27 | SCHUBERT G, PÁPAI I. Acrylate formation via metal-assisted C-C coupling between CO2 and C2H4: reaction mechanism as revealed from density functional calculations[J]. Journal of the American Chemical Society, 2003, 125(48): 14847-14858. |
28 | BERNSKOETTER W H, TYLER B T. Kinetics and mechanism of molybdenum-mediated acrylate formation from carbon dioxide and ethylene[J]. Organometallics, 2011, 30(3): 520-527. |
29 | ZHANG Y Y, HANNA B S, DINEEN A, et al. Functionalization of carbon dioxide with ethylene at molybdenum hydride complexes[J]. Organometallics, 2013, 32(14): 3969-3979. |
30 | WOLFE J M, BERNSKOETTER W H. Reductive functionalization of carbon dioxide to methyl acrylate at zerovalent tungsten[J]. Dalton Transactions, 2012, 41(35): 10763. |
31 | HOBERG H, JENNI K, KRÜGER C, et al. CC-coupling of CO2 and butadiene on iron(0) complexes—A novel route to α,ω-dicarboxylic acids[J]. Angewandte Chemie International Edition, 1986, 25(9): 810-811. |
32 | HOBERG H, JENNI K, ANGERMUND K, et al. CC-linkages of ethene with CO2 on an iron(0) complex—Synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2][J]. Angewandte Chemie International Edition, 1987, 26(2): 153-155. |
33 | LI B, KYRAN S J, YEUNG A D, et al. Acrylic acid derivatives of group 8 metal carbonyls: a structural and kinetic study[J]. Inorganic Chemistry, 2013, 52(9): 5438-5447. |
34 | AYE K T, COLPITTS D, FERGUSON G, et al. Activation of α,β-lactone by oxidative addition and the structure of a platina(Ⅳ)lactone[J]. Organometallics, 1988, 7(6): 1454-1456. |
35 | SANO K, YAMAMOTO T, YAMAMOTO A. Preparation of Ni- or Pt-containing cyclic esters by oxidative addition of cyclic carboxylic anhydrides and their properties[J]. Bulletin of the Chemical Society of Japan, 1984, 57(10): 2741-2747. |
36 | ARESTA M, Synthesis QUARANTA E., characterization and reactivity of [Rh(bpy)(C2H4)Cl]. A study on the reaction with C1 molecules (CH2O, CO2) and NaBPh4 [J]. Journal of Organometallic Chemistry, 1993, 463(1/2): 215-221. |
37 | BURKHART G, HOBERG H. Oxanickelacyclopentene derivatives from nickel(0), carbon dioxide, and alkynes[J]. Angewandte Chemie International Edition, 1982, 21(1): 76. |
38 | DÉRIEN S, DUNACH E, PERICHON J. From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes. Magnesium ions as the key for catalysis[J]. Journal of the American Chemical Society, 1991, 113(22): 8447-8454. |
39 | SAITO S, NAKAGAWA S, KOIZUMI T, et al. Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide[J]. The Journal of Organic Chemistry, 1999, 64(11): 3975-3978. |
40 | GRAHAM D C, BRUCE M I, METHA G F, et al. Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—A DFT study[J]. Journal of Organometallic Chemistry, 2008, 693(16): 2703-2710. |
41 | TAKIMOTO M, SHIMIZU K, MORI M. Nickel-promoted alkylative or arylative carboxylation of alkynes[J]. Organic Letters, 2001, 3(21): 3345-3347. |
42 | SHIMIZU K, TAKIMOTO M, SATO Y, et al. Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne[J]. Organic Letters, 2005, 7(2): 195-197. |
43 | AOKI M, KANEKO M, IZUMI S, et al. Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons[J]. Chemical Communications, 2004 (22): 2568. |
44 | LI S H, YUAN W M, MA S M. Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide[J]. Angewandte Chemie International Edition, 2011, 50(11): 2578-2582. |
45 | WANG X Q, NAKAJIMA M, MARTIN R. Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources[J]. Journal of the American Chemical Society, 2015, 137(28): 8924-8927. |
46 | FUJIHARA T, XU T H, SEMBA K, et al. Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes[J]. Angewandte Chemie International Edition, 2011, 50(2): 523-527. |
47 | TAKIMOTO M, HOU Z M. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids[J]. Chemistry: A European Journal, 2013, 19(34): 11439-11445. |
48 | TAKIMOTO M, GHOLAP S S, HOU Z M. Cu-catalyzed alkylative carboxylation of ynamides with dialkylzinc reagents and carbon dioxide[J]. Chemistry: A European Journal, 2015, 21(43): 15218-15223. |
49 | SIX Y. Titanium-mediated carboxylation of alkynes with carbon dioxide[J]. European Journal of Organic Chemistry, 2003, 2003(7): 1157-1171. |
50 | SHAO P, WANG S, DU G X, et al. Cp2TiCl2-catalyzed hydrocarboxylation of alkynes with CO2: formation of α,β-unsaturated carboxylic acids[J]. RSC Advances, 2017, 7(6): 3534-3539. |
51 | SANTHOSHKUMAR R, HONG Y C, LUO C Z, et al. Synthesis of vinyl carboxylic acids using carbon dioxide as a carbon source by iron-catalyzed hydromagnesiation[J]. ChemCatChem, 2016, 8(13): 2210-2213. |
52 | NOGI K, FUJIHARA T, JUN T R, et al. Carboxyzincation employing carbon dioxide and zinc powder: cobalt-catalyzed multicomponent coupling reactions with alkynes[J]. Journal of the American Chemical Society, 2016, 138(17): 5547-5550. |
53 | TAKIMOTO M, KAWAMURA M, MORI M. Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes[J]. Organic Letters, 2003, 5(15): 2599-2601. |
54 | TAKIMOTO M, KAWAMURA M, MORI M. Nickel-mediated regio- and stereoselective carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide[J]. Synthesis, 2004, 2004(5): 791-795. |
55 | TANI Y, FUJIHARA T, JUN T R, et al. Copper-catalyzed regiodivergent silacarboxylation of allenes with carbon dioxide and a silylborane[J]. Journal of the American Chemical Society, 2014, 136(51): 17706-17709. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[9] | LIU Hanxiao, WU Liming, LIN Qingyang, ZHOU Ye, LUO Xiang, GUI Zhijun, LIU Xiaowei, SHAN Sike, ZHU Qianlin, LU Shijian. Carbon footprint assessment technology and its application in key industries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2201-2218. |
[10] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[11] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[12] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[13] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[14] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[15] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |