Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1176-1186.DOI: 10.16085/j.issn.1000-6613.2021-2276
• Carbon dioxide capture, storage and utilization • Previous Articles Next Articles
RUAN Jiawei(), YE Xiangzhu, CHEN Lifang(), QI Zhiwen()
Received:
2021-11-08
Revised:
2021-12-27
Online:
2022-03-28
Published:
2022-03-23
Contact:
CHEN Lifang,QI Zhiwen
通讯作者:
陈立芳,漆志文
作者简介:
阮佳纬(1998—),男,硕士研究生,研究方向为CO2捕集与转化。E-mail:基金资助:
CLC Number:
RUAN Jiawei, YE Xiangzhu, CHEN Lifang, QI Zhiwen. Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1176-1186.
阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2276
34 | ANTHOFER Michael H, WILHELM Michael E, COKOJA Mirza, et al. Cycloaddition of CO2 and epoxides catalyzed by imidazolium bromides under mild conditions: influence of the cation on catalyst activity[J]. Catalysis Science & Technology, 2014, 4(6): 1749-1758. |
35 | XIAO Linfei, SU Dan, YUE Chengtao, et al. Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides[J]. Journal of CO2 Utilization, 2014, 6: 1-6. |
36 | SIMON Nathalia M, ZANATTA Marcileia, NEUMANN Jessé, et al. Cation-anion-CO2 interactions in imidazolium-based ionic liquid sorbents[J]. Chemphyschem, 2018, 19(21): 2879-2884. |
37 | TODA Yasunori, KOMIYAMA Yutaka, KIKUCHI Ayaka, et al. Tetraarylphosphonium salt-catalyzed carbon dioxide fixation at atmospheric pressure for the synthesis of cyclic carbonates[J]. ACS Catalysis, 2016, 6(10): 6906-6910. |
38 | WU Yunyan, ZHAO Yanfei, LI Ruipeng, et al. Tetrabutylphosphonium-based ionic liquid catalyzed CO2 transformation at ambient conditions: a case of synthesis of α-alkylidene cyclic carbonates[J]. ACS Catalysis, 2017, 7(9): 6251-6255. |
39 | XIAO Linfei, LV Dongwei, SU Dan, et al. Influence of acidic strength on the catalytic activity of Brønsted acidic ionic liquids on synthesizing cyclic carbonate from carbon dioxide and epoxide[J]. Journal of Cleaner Production, 2014, 67: 285-290. |
1 | YANG Qihao, YANG Chun Chuen, LIN Chia Her, et al. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion[J]. Angewandte Chemie International Edition, 2019, 131(11): 3549-3553. |
2 | ZHOU Yinxi, HU Suqin, MA Xiumin, et al. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 284(1/2): 52-57. |
40 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
41 | ROSHAN Kuruppathparambil Roshith, PALISSERY Revi Achuthan, KATHALIKKATTIL Amal Cherian, et al. A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO2: bicarbonate anion as an active species[J]. Catalysis Science & Technology, 2016, 6(11): 3997-4004. |
3 | LI Zhuojian, SUN Jianfei, XU Qinqin, et al. Homogeneous and heterogeneous ionic liquid system: promising “ideal catalysts” for the fixation of CO2 into cyclic carbonates[J]. ChemCatChem, 2021, 13(8): 1848-1866. |
4 | KAR Sayan, Raktim SEN, KOTHANDARAMAN Jotheeswari, et al. Mechanistic insights into ruthenium-pincer-catalyzed amine-assisted homogeneous hydrogenation of CO2 to methanol[J]. Journal of the American Chemical Society, 2019, 141(7): 3160-3170. |
42 | MENG Xianglei, JU Zhaoyang, ZHANG Suojiang, et al. Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions[J]. Green Chemistry, 2019, 21(12): 3456-3463. |
43 | MUJMULE Rajendra B, RAGHAV RAO M P, RATHOD Pramod V, et al. Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates[J]. Journal of CO2 Utilization, 2019, 33: 284-291. |
5 | RAO Heng, SCHMIDT Luciana C, BONIN Julien, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst[J]. Nature, 2017, 548(7665): 74-77. |
6 | ARESTA Michele, DIBENEDETTO Angela, ANGELINI Antonella. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
7 | CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
8 | GUO Liping, LAMB Katie J, NORTH Michael. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates[J]. Green Chemistry, 2021, 23(1): 77-118. |
9 | TAMBOLI Ashif H, CHAUGULE Avinash A, KIM Hern. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Engineering Journal, 2017, 323: 530-544. |
10 | CHAUGULE Avinash A, TAMBOLI Ashif H, KIM Hern. Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate[J]. Fuel, 2017, 200: 316-332. |
44 | ZHANG Zhiguo, FAN Fangjun, XING Huabin, et al. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 2841-2846. |
45 | CHEN Kaihong, SHI Guiling, Rina DAO, et al. Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO2 at atmospheric pressure[J]. Chemical Communications, 2016, 52(50): 7830-7833. |
11 | Carmen MARTÍN, FIORANI Giulia, KLEIJ Arjan W. Recent advances in the catalytic preparation of cyclic organic carbonates[J]. ACS Catalysis, 2015, 5(2): 1353-1370. |
12 | XUE Zhimin, JIANG Jingyun, MA Mingguo, et al. Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2623-2631. |
13 | XUE Zhimin, LIU Feijie, JIANG Jingyun, et al. Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived γ-valerolactone: enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO2 [J]. Green Chemistry, 2017, 19(21): 5041-5045. |
14 | 杨美, 钟向宏, 陈群. 离子液体催化二氧化碳合成环状碳酸酯的研究进展[J]. 化工进展, 2017, 36(9): 3300-3308. |
YANG Mei, ZHONG Xianghong, CHEN Qun. Recent progress of the synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ionic liquids[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3300-3308. | |
15 | KABRA Satish K, TURPEINEN Esa, KEISKI Ranapati L, et al. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide: a thermodynamic and experimental study[J]. The Journal of Supercritical Fluids, 2016, 117: 98-107. |
16 | CAO Yunxia, CHENG Hangxin, MA Lingling, et al. Research progress in the direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Catalysis Surveys from Asia, 2012, 16(3): 138-147. |
17 | CASARIN Maurizio, FALCOMER Daniele, GLISENTI Antonella, et al. Experimental and theoretical study of the interaction of CO2 with α-Al2O3 [J]. Inorganic Chemistry, 2003, 42(2): 436-445. |
18 | TOMISHIGE Keiichi, IKEDA Yoshiki, SAKAIHORI Tomohiro, et al. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Journal of Catalysis, 2000, 192(2): 355-362. |
19 | ZHAO Haoyan, LU Bin, LI Xiaopeng, et al. Hydroxyl-functionalized ionic liquid for activation and conversion of CO2 and methanol into dimethyl carbonate[J]. Journal of CO2 Utilization, 2015, 12: 49-53. |
20 | SUN Jia, LU Bin, WANG Xin, et al. A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2 [J]. Fuel Processing Technology, 2013, 115: 233-237. |
21 | 范芳君, 张治国, 邢华斌, 等. 超临界二氧化碳中合成环碳酸酯的催化剂研究进展[J]. 化工进展, 2017, 36(8): 2924-2933. |
FAN Fangjun, ZHANG Zhiguo, XING Huabin, et al. Progress in synthesis of cyclic carbonates under supercritical carbon dioxide[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2924-2933. | |
22 | KLEIJ Arjan W, NORTH Michael, URAKAWA Atsushi. CO2 Catalysis[J]. ChemSusChem, 2017, 10(6): 1036-1038. |
23 | XUE Zhimin, ZHAO Xinhui, WANG Jinfang, et al. Bifunctional boron phosphate as an efficient catalyst for epoxide activation to synthesize cyclic carbonates with CO2 [J]. Chemistry: an Asian Journal, 2017, 12(17): 2271-2277. |
24 | GIRARD AnneLise, SIMON Nathália, ZANATTA Marcileia, et al. Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide[J]. Green Chemistry, 2014, 16(5): 2815-2825. |
25 | YANG Jiazhen, LU Xingmei, GUI Jinsong, et al. A new theory for ionic liquids—The interstice model: Part 1. The density and surface tension of ionic liquid EMISE[J]. Green Chemistry, 2004, 6(11): 541-543. |
46 | BLATH Jessica, DEUBLER Natalie, HIRTH Thomas, et al. Chemisorption of carbon dioxide in imidazolium based ionic liquids with carboxylic anions[J]. Chemical Engineering Journal, 2012, 181/182: 152-158. |
47 | WANG Li, LI Ping, JIN Xiangfeng, et al. Mechanism of fixation of CO2 in the presence of hydroxyl-functionalized quaternary ammonium salts[J]. Journal of CO2 Utilization, 2015, 10: 113-119. |
48 | SUN Jian, ZHANG Suojiang, CHENG Weiguo, et al. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate[J]. Tetrahedron Letters, 2008, 49(22): 3588-3591. |
49 | SUN Jian, HAN Lijun, CHENG Weiguo, et al. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions[J]. ChemSusChem, 2011, 4(4): 502-507. |
50 | MENG Xianglei, HE Hongyan, NIE Yi, et al. Temperature-controlled reaction-separation for conversion of CO2 to carbonates with functional ionic liquids catalyst[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3081-3086. |
51 | 赵朝阳, 罗小燕, 裴宝有, 等. 多孔超交联聚合物固载离子液体催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2021, 40(3): 1438-1448. |
ZHAO Zhaoyang, LUO Xiaoyan, PEI Baoyou, et al. Research progress on CO2 cycloaddition catalyzed by porous hyper-crosslinked polymers immobilized ionic liquids[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1438-1448. | |
52 | CHEN Yu, ZHOU Xiaoqin, CAO Yuanyuan, et al. Quantitative investigation on the physical and chemical interactions between CO2 and amine-functionalized ionic liquid [aEMMIM][BF4] by NMR[J]. Chemical Physics Letters, 2013, 574: 124-128. |
53 | WANG Mei, ZHANG Liqi, GAO Linxia, et al. Improvement of the CO2 absorption performance using ionic liquid [NH2emim][BF4] and [emim][BF4]/[bmim][BF4] mixtures[J]. Energy & Fuels, 2013, 27(1): 461-466. |
54 | CHEN Jian, GAO Han, DING Tong, et al. Mechanistic studies of CO2 cycloaddition reaction catalyzed by amine-functionalized ionic liquids[J]. Frontiers in Chemistry, 2019, 7: 615-622. |
55 | YUE Chengtao, SU Dan, ZHANG Xu, et al. Amino-functional imidazolium ionic liquids for CO2 activation and conversion to form cyclic carbonate[J]. Catalysis Letters, 2014, 144(7): 1313-1321. |
56 | LIU Mengshuai, LIANG Lin, LI Xin, et al. Novel urea derivative-based ionic liquids with dual-functions: CO2 capture and conversion under metal- and solvent-free conditions[J]. Green Chemistry, 2016, 18(9): 2851-2863. |
57 | YUE Shuang, WANG Pingping, HAO Xueying. Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions[J]. Fuel, 2019, 251: 233-241. |
58 | 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896-4907. |
CHENG Hongye, QI Zhiwen. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4896-4907. | |
59 | 易兰, 李文英, 冯杰, 等. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
YI Lan, LI Wenying, FENG Jie. Application of ionic liquids and deep eutectic solvents in the separation of coal-based liquids[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2066-2078. | |
60 | Gregorio GARCÍA, APARICIO Santiago, ULLAH Ruh, et al. Deep eutectic solvents: physicochemical properties and gas separation applications[J]. Energy & Fuels, 2015, 29(4): 2616-2644. |
61 | PAIVA Alexandre, CRAVEIRO Rita, AROSO Ivo, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071. |
62 | SARMAD Shokat, MIKKOLA Jyri Pekka, JI Xiaoyan. Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents[J]. ChemSusChem, 2017, 10(2): 324-352. |
63 | FU Hui, HOU Yunpeng, SANG Haina, et al. Carbon dioxide capture by new DBU-based DES: the relationship between ionicity and absorptive capacity[J]. AIChE Journal, 2021, 67(7): 17244. |
64 | SHUKLA Shashi Kant, NIKJOO Dariush, MIKKOLA Jyri Pekka. Is basicity the sole criterion for attaining high carbon dioxide capture in deep-eutectic solvents?[J]. Physical Chemistry Chemical Physics, 2020, 22(3): 966-970. |
26 | LEI Zhigang, DAI Chengna, CHEN Biaohua. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326. |
27 | DAI Chengna, LEI Zhigang, CHEN Biaohua. Gas solubility in long ‐chain imidazolium ‐based ionic liquids[J]. AIChE Journal, 2017, 63(6): 1792-1798. |
65 | SMITH Emma L, ABBOTT Andrew P, RYDER Karl S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. |
66 | PETKOVIC Marija, FERGUSON Jamie L, H Q Nimal GUNARATNE, et al. Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability[J]. Green Chemistry, 2010, 12(4): 643. |
67 | Raj Kumar TAK, PATEL Parth, SUBRAMANIAN Saravanan, et al. Cycloaddition reaction of spiro-epoxy oxindole with CO2 at atmospheric pressure using deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11200-11205. |
68 | CHENG Weiguo, FU Zengzeng, WANG Jinquan, et al. ZnBr2-based choline chloride ionic liquid for efficient fixation of CO2 to cyclic carbonate[J]. Synthetic Communications, 2012, 42(17): 2564-2573. |
69 | QIN Hao, HU Xutao, WANG Jingwen, et al. Overview of acidic deep eutectic solvents on synthesis, properties and applications[J]. Green Energy & Environment, 2020, 5(1): 8-21. |
70 | LIU Fusheng, GU Yongqiang, ZHAO Penghui, et al. N-hydroxysuccinimide based deep eutectic catalysts as a promising platform for conversion of CO2 into cyclic carbonates at ambient temperature[J]. Journal of CO2 Utilization, 2019, 33: 419-426. |
71 | DINDARLOO INALOO Iman, MAJNOONI Sahar. Carbon dioxide utilization in the efficient synthesis of carbamates by deep eutectic solvents (DES) as green and attractive solvent/catalyst systems[J]. New Journal of Chemistry, 2019, 43(28): 11275-11281. |
72 | VAGNONI Martina, Chiara SAMORÌ, GALLETTI Paola. Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO2 [J]. Journal of CO2 Utilization, 2020, 42: 101302. |
73 | WANG Zheng, WANG Yajun, XIE Qianjie, et al. Aliphatic carboxylic acid as a hydrogen-bond donor for converting CO2 and epoxide into cyclic carbonate under mild conditions[J]. New Journal of Chemistry, 2021, 45(21): 9403-9408. |
74 | YINGCHAROEN Prapussorn, KONGTES Chutima, ARAYACHUKIAT Sunatda, et al. Assessing the pKa-dependent activity of hydroxyl hydrogen bond donors in the organocatalyzed cycloaddition of carbon dioxide to epoxides: experimental and theoretical study[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 366-373. |
75 | WANG Xiangyong, WANG Lin, ZHAO Yingying, et al. Efficient and practical organocatalytic system for the synthesis of cyclic carbonates from carbon dioxide and epoxides: 3-hydroxypyridine/tetra-n-butylammonium iodide[J]. Tetrahedron, 2017, 73(8): 1190-1195. |
76 | LIU Fusheng, GU Yongqiang, XIN Hao, et al. Multifunctional phosphonium-based deep eutectic ionic liquids: insights into simultaneous activation of CO2 and epoxide and their subsequent cycloaddition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16674-16681. |
77 | LIU Wei, LU Guanghui. Carbonation of epoxidized methyl soyates in tetrabutylammonium bromide-based deep eutectic solvents[J]. Journal of Oleo Science, 2018, 67(5): 609-616. |
78 | SUN Jian, WANG Lei, ZHANG Suojiang, et al. ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1/2): 295-300. |
79 | REHMAN Abdul, M F M Guman RESUL, Valentine C EZE, et al. A kinetic study of Zn halide/TBAB-catalysed fixation of CO2 with styrene oxide in propylene carbonate[J]. Green Processing and Synthesis, 2019, 8(1): 719-729. |
80 | SUN Jian, CHENG Weiguo, YANG Zifeng, et al. Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates[J]. Green Chemistry, 2014, 16(6): 3071. |
28 | TAHERI Mohsen, DAI Chengna, LEI Zhigang. CO2 capture by methanol, ionic liquid, and their binary mixtures: experiments, modeling, and process simulation[J]. AIChE Journal, 2018, 64(6): 2168-2180. |
29 | ZHANG Xiangping, ZHANG Xiaochun, DONG Haifeng, et al. Carbon capture with ionic liquids: overview and progress[J]. Energy & Environmental Science, 2012, 5(5): 6668. |
81 | Sara GARCIA-ARGUELLES, FERRER Maria Luisa, IGLESIAS Marta, et al. Study of superbase-based deep eutectic solvents as the catalyst in the chemical fixation of CO2 into cyclic carbonates under mild conditions[J]. Materials, 2017, 10(7): 759. |
82 | YANG Xiaoqing, ZOU Qizhuang, ZHAO Tianxiang, et al. Deep eutectic solvents as efficient catalysts for fixation of CO2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(31): 10437-10443. |
83 | YAN Hong, ZHAO Lei, BAI Yinge, et al. Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6): 2523-2530. |
84 | Hongying LYU, WU Kai, ZHAO Yuchao, et al. Synthesis of cyclic carbonates from CO2 and propylene oxide (PO) with deep eutectic solvents (DESs) based on amino acids (AAs) and dicarboxylic acids[J]. Journal of CO2 Utilization, 2017, 22: 400-406. |
85 | WANG Song, ZHU Zhiguo, HAO Dongmei, et al. Synthesis cyclic carbonates with BmimCl-based ternary deep eutectic solvents system[J]. Journal of CO2 Utilization, 2020, 40: 101250. |
86 | YU Dongkun, XUE Zhimin, MU Tiancheng. Eutectics: formation, properties, and applications[J]. Chemical Society Reviews, 2021, 50(15): 8596-8638. |
30 | CHEN Yu, MU Tiancheng. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574. |
31 | ZHAO Tianxiang, HU Xingbang, WU Dongsheng, et al. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant[J]. ChemSusChem, 2017, 10(9): 2046-2052. |
32 | HU Xutao, WANG Jingwen, MEI Mingcan, et al. Transformation of CO2 incorporated in adducts of N-heterocyclic carbene into dialkyl carbonates under ambient conditions: an experimental and mechanistic study[J]. Chemical Engineering Journal, 2021, 413: 127469. |
33 | ZHANG Zhaofu, WU Congyi, MA Jun, et al. A strategy to overcome the thermodynamic limitation in CO2 conversion using ionic liquids and urea[J]. Green Chemistry, 2015, 17(3): 1633-1639. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[7] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[8] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[13] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[14] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[15] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |