Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 261-276.DOI: 10.16085/j.issn.1000-6613.2025-0516
• Materials science and technology • Previous Articles
WANG Lu1(
), HE Yangdong1, LI Yaxin1, FAN Rui2, CHENG Shijin2, ZHANG Jie2
Received:2025-04-08
Revised:2025-07-17
Online:2025-11-24
Published:2025-10-25
Contact:
WANG Lu
王露1(
), 何阳东1, 李雅欣1, 范锐2, 陈仕锦2, 张杰2
通讯作者:
王露
作者简介:王露(1994—),男,博士,工程师,研究方向为小分子气体的制取与纯化。E-mail:wanglu28@petrochina.com.cn。
基金资助:CLC Number:
WANG Lu, HE Yangdong, LI Yaxin, FAN Rui, CHENG Shijin, ZHANG Jie. Structural design and performance optimization of high-performance polymeric membranes for He/CH4 and He/N2 separation[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 261-276.
王露, 何阳东, 李雅欣, 范锐, 陈仕锦, 张杰. 高性能聚合物膜用于He/CH4和He/N2分离的结构设计与性能优化[J]. 化工进展, 2025, 44(S1): 261-276.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0516
| 天然气田 | CH4/% | 其他碳氢化合物/% | CO2/% | N2/% | He/% |
|---|---|---|---|---|---|
| 中国四川 | 98.01 | 0.56 | 0.36 | 0.81 | 0.2 |
| 中国塔里木盆地 | 61.19~87.44 | 2.3~12.56 | 1.18~19.43 | 2.59~26.3 | 0.22~0.73 |
| 中国渭河盆地 | 10.51 | — | 4.92 | 82.40 | 1.05 |
| 美国新墨西哥洲 | 49 | 1.95 | 0.9 | 45 | 4.05 |
| 美国阿拉斯加洲 | 90.2 | NA | 0.3 | 6.8 | 2.54 |
| 美国得克萨斯州 | 66.2 | 1.43 | 0.2 | 31.1 | 1.17 |
| 加拿大阿尔伯塔省 | 93 | — | 0.5 | 6 | 0.53 |
| 波兰奥斯特鲁夫 | 56 | 0.3 | 0.3 | 43 | 0.4 |
| 卡塔尔北部油田 | 97.5 | — | 0.1 | 2.3 | 0.21 |
| 澳大利亚棕榈谷 | 79.5 | 8.85 | 3.68 | 5.19 | 0.03 |
| 天然气田 | CH4/% | 其他碳氢化合物/% | CO2/% | N2/% | He/% |
|---|---|---|---|---|---|
| 中国四川 | 98.01 | 0.56 | 0.36 | 0.81 | 0.2 |
| 中国塔里木盆地 | 61.19~87.44 | 2.3~12.56 | 1.18~19.43 | 2.59~26.3 | 0.22~0.73 |
| 中国渭河盆地 | 10.51 | — | 4.92 | 82.40 | 1.05 |
| 美国新墨西哥洲 | 49 | 1.95 | 0.9 | 45 | 4.05 |
| 美国阿拉斯加洲 | 90.2 | NA | 0.3 | 6.8 | 2.54 |
| 美国得克萨斯州 | 66.2 | 1.43 | 0.2 | 31.1 | 1.17 |
| 加拿大阿尔伯塔省 | 93 | — | 0.5 | 6 | 0.53 |
| 波兰奥斯特鲁夫 | 56 | 0.3 | 0.3 | 43 | 0.4 |
| 卡塔尔北部油田 | 97.5 | — | 0.1 | 2.3 | 0.21 |
| 澳大利亚棕榈谷 | 79.5 | 8.85 | 3.68 | 5.19 | 0.03 |
| 国家 | 生产量/m3 | 储量(标准)/m3 | |
|---|---|---|---|
| 2019年 | 2020年 | ||
| 合计 | 1.58×108 | 1.64×108 | 约4.91×1010 |
| 美国 | 8.9×107 | 8.9×107 | 2.06×1010 |
| 阿尔及利亚 | 1.4×107 | 1.4×107 | 8.2×109 |
| 澳大利亚 | 4.0×106 | 4.0×106 | — |
| 波兰 | 1.0×106 | 1.0×106 | 2.3×109 |
| 卡塔尔 | 4.5×107 | 5.1×107 | 1.01×1010 |
| 俄罗斯 | 5.0×106 | 5.0×106 | 6.8×109 |
| 中国 | <1.0×106 | <1.0×106 | 1.1×109 |
| 国家 | 生产量/m3 | 储量(标准)/m3 | |
|---|---|---|---|
| 2019年 | 2020年 | ||
| 合计 | 1.58×108 | 1.64×108 | 约4.91×1010 |
| 美国 | 8.9×107 | 8.9×107 | 2.06×1010 |
| 阿尔及利亚 | 1.4×107 | 1.4×107 | 8.2×109 |
| 澳大利亚 | 4.0×106 | 4.0×106 | — |
| 波兰 | 1.0×106 | 1.0×106 | 2.3×109 |
| 卡塔尔 | 4.5×107 | 5.1×107 | 1.01×1010 |
| 俄罗斯 | 5.0×106 | 5.0×106 | 6.8×109 |
| 中国 | <1.0×106 | <1.0×106 | 1.1×109 |
| [1] | SOLEIMANY Ali, HOSSEINI Seyed Saeid, GALLUCCI Fausto. Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: A review[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 296-318. |
| [2] | BALL Philip. Helium’s deep mystery[J]. Nature Materials, 2019, 18(2): 96. |
| [3] | NUTTALL William J, CLARKE Richard H, GLOWACKI Bartek A. Stop squandering helium[J]. Nature, 2012, 485(7400): 573-575. |
| [4] | SUNARSO J, HASHIM S S, LIN Y S, et al. Membranes for helium recovery: An overview on the context, materials and future directions[J]. Separation and Purification Technology, 2017, 176: 335-383. |
| [5] | ZARTMAN R E, WASSERBURG G J, REYNOLDS J H. Helium, argon, and carbon in some natural gases[J]. Journal of Geophysical Research, 1961, 66(1): 277-306. |
| [6] | RUFFORD Thomas E, Ida CHAN K, HUANG Stanley H, et al. A review of conventional and emerging process technologies for the recovery of helium from natural gas[J]. Adsorption Science & Technology, 2014, 32(1): 49-72. |
| [7] | SCHOLES Colin A, GHOSH Ujjal K. Review of membranes for helium separation and purification[J]. Membranes, 2017, 7(1): 9. |
| [8] | DAI Zhongde, DENG Jing, HE Xuezhong, et al. Helium separation using membrane technology: Recent advances and perspectives[J]. Separation and Purification Technology, 2021, 274: 119044. |
| [9] | SANDERS David F, SMITH Zachary P, GUO Ruilan, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review[J]. Polymer, 2013, 54(18): 4729-4761. |
| [10] | FREEMAN Benny D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
| [11] | ALDERS Michael, WINTERHALDER Dominik, WESSLING Matthias. Helium recovery using membrane processes[J]. Separation and Purification Technology, 2017, 189: 433-440. |
| [12] | Ze-Xian LOW, BUDD Peter M, MCKEOWN Neil B. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
| [13] | BABU Deepu J, HE Guangwei, VILLALOBOS Luis Francisco, et al. Crystal engineering of metal-organic framework thin films for gas separations[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 49-69. |
| [14] | Hoang VINH-THANG, KALIAGUINE Serge. Predictive models for mixed-matrix membrane performance: A review[J]. Chemical Reviews, 2013, 113(7): 4980-5028. |
| [15] | GANTZEL Peter K, MERTEN Ulrich. Gas separations with high-flux cellulose acetate membranes[J]. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(2): 331-332. |
| [16] | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
| [17] | GUMMA Sasidhar, TALU Orhan. Gibbs dividing surface and helium adsorption[J]. Adsorption, 2003, 9(1): 17-28. |
| [18] | VAN AMERONGEN G J. The permeability of different rubbers to gases and its relation to diffusivity and solubility[J]. Journal of Applied Physics, 1946, 17(11): 972-985. |
| [19] | BARRER R M, SKIRROW G. Transport and equilibrium phenomena in gas-elastomer systems. Ⅰ. Kinetic phenomena[J]. Journal of Polymer Science, 1948, 3(4): 549-563. |
| [20] | SCHOLES Colin A, STEVENS Geoff W, KENTISH Sandra E. Membrane gas separation applications in natural gas processing[J]. Fuel, 2012, 96: 15-28. |
| [21] | PULEO A C, PAUL D R, KELLEY S S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate[J]. Journal of Membrane Science, 1989, 47(3): 301-332. |
| [22] | 蔡耀奎. 薄膜渗透法精制粗氦的工业试验与应用[J]. 天然气工业, 1990, 10(4): 73-77, 10. |
| CAI Yaokui. Industrial test and application of refining crude helium by thin film infiltration[J]. Natural Gas Industry, 1990, 10(4): 73-77, 10. | |
| [23] | MURUGANANDAM N, PAUL D R. Evaluation of substituted polycarbonates and a blend with polystyrene as gas separation membranes[J]. Journal of Membrane Science, 1987, 34(2): 185-198. |
| [24] | HELLUMS M W, KOROS W J, HUSK G R, et al. Fluorinated polycarbonates for gas separation applications[J]. Journal of Membrane Science, 1989, 46(1): 93-112. |
| [25] | Mar LÓPEZ-GONZÁLEZ, SAIZ Enrique, RIANDE Evaristo, et al. Transport of helium in polycarbonate membranes[J]. Polymer, 2002, 43(2): 409-413. |
| [26] | Deger SEN, YILMAZ Levent, KALIPCILAR Halil. Effect of feed composition on the gas separation performance of binary and ternary mixed matrix membranes[J]. Separation Science and Technology, 2013, 48(6): 859-866. |
| [27] | 李均方, 何琳琳, 柴露华. 天然气提氦技术现状及建议[J]. 石油与天然气化工, 2018, 47(4): 41-44. |
| LI Junfang, HE Linlin, CHAI Luhua. Present situation and suggestions of helium extraction technology from natural gas[J]. Chemical Engineering of Oil & Gas, 2018, 47(4): 41-44. | |
| [28] | GHANEM Bader S, MCKEOWN Neil B, BUDD Peter M, et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides[J]. Macromolecules, 2009, 42(20): 7881-7888. |
| [29] | ALGHUNAIMI Fahd, GHANEM Bader, ALASLAI Nasser, et al. Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading[J]. Journal of Membrane Science, 2016, 520: 240-246. |
| [30] | ZHUANG Yongbing, SEONG Jong Geun, Yu Seong DO, et al. Intrinsically microporous soluble polyimides incorporating tröger’s base for membrane gas separation[J]. Macromolecules, 2014, 47(10): 3254-3262. |
| [31] | ALGHUNAIMI Fahd, GHANEM Bader, WANG Yingge, et al. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor[J]. Polymer, 2017, 121: 9-16. |
| [32] | WU Shanshan, LIANG Jiachen, SHI Yapeng, et al. Design of interchain hydrogen bond in polyimide membrane for improved gas selectivity and membrane stability[J]. Journal of Membrane Science, 2021, 618: 118659. |
| [33] | CALLE Mariola, Hye Jin JO, DOHERTY Cara M, et al. Cross-linked thermally rearranged poly(benzoxazole-co-imide) membranes prepared from ortho-hydroxycopolyimides containing pendant carboxyl groups and gas separation properties[J]. Macromolecules, 2015, 48(8): 2603-2613. |
| [34] | WU Albert X, DRAYTON James A, RODRIGUEZ Katherine Mizrahi, et al. Influence of aliphatic and aromatic fluorine groups on gas permeability and morphology of fluorinated polyimide films[J]. Macromolecules, 2020, 53(13): 5085-5095. |
| [35] | Carla AGUILAR-LUGO, Cristina ÁLVAREZ, LEE Young Moo, et al. Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides[J]. Macromolecules, 2018, 51(5): 1605-1619. |
| [36] | WANG Lu, LI Ying, ZHANG Ping, et al. Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al2O3 support for helium extraction from natural gas[J]. Journal of Membrane Science, 2022, 657: 120614. |
| [37] | WANG Lu, LI Ying, PU Liming, et al. Copolyimide membranes fabricated by nonsolvent-induced phase separation for helium extraction from natural gas[J]. Separation and Purification Technology, 2023, 313: 123455. |
| [38] | MIRFENDERESKI Seyed Mojtaba, MAZAHERI Tayebeh. Preparation of high performance ZSM-5 zeolite membranes for CO2/H2 separation[J]. Journal of Industrial and Engineering Chemistry, 2021, 94: 240-252. |
| [39] | LI Ying, WANG Lu, XIE Junyan, et al. Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation[J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 44. |
| [40] | HAN Sang Hoon, LEE Jae Eun, LEE Kee-Jung, et al. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement[J]. Journal of Membrane Science, 2010, 357(1/2): 143-151. |
| [41] | KUMBHARKAR Santosh C, KHARUL Ulhas K. Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution[J]. Journal of Membrane Science, 2010, 357(1/2): 134-142. |
| [42] | WANG Xuerui, SHAN Meixia, LIU Xinlei, et al. High-performance polybenzimidazole membranes for helium extraction from natural gas[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20098-20103. |
| [43] | JANSEN Johannes Carolus, FRIESS Karel, DRIOLI Enrico. Organic vapour transport in glassy perfluoropolymer membranes: A simple semi-quantitative approach to analyze clustering phenomena by time lag measurements[J]. Journal of Membrane Science, 2011, 367(1/2): 141-151. |
| [44] | OMIDVAR Maryam, NGUYEN Hien, LIU Junyi, et al. Sorption-enhanced membrane materials for gas separation: A road less traveled[J]. Current Opinion in Chemical Engineering, 2018, 20: 50-59. |
| [45] | OKAMOTO Yoshiyuki, ZHANG Hao, MIKES Frantisek, et al. New perfluoro-dioxolane-based membranes for gas separations[J]. Journal of Membrane Science, 2014, 471: 412-419. |
| [46] | YAVARI Milad, FANG Minfeng, NGUYEN Hien, et al. Dioxolane-based perfluoropolymers with superior membrane gas separation properties[J]. Macromolecules, 2018, 51(7): 2489-2497. |
| [47] | FANG Minfeng, OKAMOTO Yoshiyuki, KOIKE Yasuhiro, et al. Gas separation membranes prepared with copolymers of perfluoro(2-methylene-4,5-dimethyl-1,3-dioxlane) and chlorotrifluoroethylene[J]. Journal of Fluorine Chemistry, 2016, 188: 18-22. |
| [48] | FANG Minfeng, HE Zhenjie, MERKEL Timothy C, et al. High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement[J]. Journal of Materials Chemistry A, 2018, 6(2): 652-658. |
| [49] | SMITH Zachary P, TIWARI Rajkiran R, DOSE Michelle E, et al. Influence of diffusivity and sorption on helium and hydrogen separations in hydrocarbon, silicon, and fluorocarbon-based polymers[J]. Macromolecules, 2014, 47(9): 3170-3184. |
| [50] | SEONG Jong Geun, LEE Won Hee, LEE Jongmyeong, et al. Microporous polymers with cascaded cavities for controlled transport of small gas molecules[J]. Science Advances, 2021, 7(40): eabi9062. |
| [51] | LI Kaihua, LI Qixuan, CAI Zhenxiao, et al. Microporosity effect of intrinsic microporous polyimide membranes on their helium enrichment performance after direct fluorination[J]. Journal of Membrane Science, 2022, 660: 120868. |
| [52] | LIU Lingyu, LI Qixuan, SUN Luxin, et al. Ultrahigh He enrichment property of carbon molecular sieve membranes by direct fluorination[J]. Journal of Membrane Science, 2025, 717: 123647. |
| [53] | MA Xiaohua, LI Kaihua, ZHU Zhiyang, et al. High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment[J]. Journal of Materials Chemistry A, 2021, 9(34): 18313-18322. |
| [54] | WU Qi, LIU Lu, JIAO Yang, et al. Precise helium sieving from hydrogen using fluorine-decorated carbon hollow fiber membranes[J]. Angewandte Chemie International Edition, 2024, 63(33): e202400688. |
| [55] | PARK Ho Bum, JUNG Chul Ho, LEE Young Moo, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions[J]. Science, 2007, 318(5848): 254-258. |
| [56] | SCHOLES Colin A, RIBEIRO Claudio P, KENTISH Sandra E, et al. Thermal rearranged poly(benzoxazole-co-imide) membranes for CO2 separation[J]. Journal of Membrane Science, 2014, 450: 72-80. |
| [57] | YEONG Yin Fong, WANG Huan, PALLATHADKA PRAMODA Kumari, et al. Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties[J]. Journal of Membrane Science, 2012, 397/398: 51-65. |
| [58] | SCHOLES Colin A. Thermally rearranged poly(benzoxazole) copolymer membranes for improved gas separation: A review[J]. Australian Journal of Chemistry, 2016, 69(6): 601. |
| [59] | Hye Jin JO, Chye Yang SOO, DONG Guangxi, et al. Thermally rearranged poly(benzoxazole-co-imide) membranes with superior mechanical strength for gas separation obtained by tuning chain rigidity[J]. Macromolecules, 2015, 48(7): 2194-2202. |
| [60] | ZHUANG Yongbing, SEONG Jong Geun, LEE Won Hee, et al. Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes[J]. Macromolecules, 2015, 48(15): 5286-5299. |
| [61] | SMITH Stefan J D, HOU Rujing, LAU Cher Hon, et al. Highly permeable thermally rearranged mixed matrix membranes (TR-MMM)[J]. Journal of Membrane Science, 2019, 585: 260-270. |
| [62] | YERZHANKYZY Ainur, GHANEM Bader S, WANG Yingge, et al. Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide[J]. Journal of Membrane Science, 2020, 595: 117512. |
| [63] | CALLE Mariola, LEE Young Moo. Thermally rearranged (TR) poly(ether-benzoxazole) membranes for gas separation[J]. Macromolecules, 2011, 44(5): 1156-1165. |
| [64] | GHANEM Bader S, SWAIDAN Raja, LITWILLER Eric, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation[J]. Advanced Materials, 2014, 26(22): 3688-3692. |
| [65] | ZHENG Peijun, XIE Wei, CAI Zhili, et al. Ionization of Tröger’s base polymer of intrinsic microporosity for high-performance membrane-mediated helium recovery[J]. Journal of Membrane Science, 2023, 672: 121425. |
| [66] | LONG Timothy M, SWAGER Timothy M. Molecular design of free volume as a route to low-κ dielectric materials[J]. Journal of the American Chemical Society, 2003, 125(46): 14113-14119. |
| [67] | JANSEN J C, MACCHIONE M, DRIOLI E. On the unusual solvent retention and the effect on the gas transport in perfluorinated Hyflon AD® membranes[J]. Journal of Membrane Science, 2007, 287(1): 132-137. |
| [68] | LIU Sainan, MA Liang-Chih, CHEN Chien-Hua, et al. Highly gas permeable, ultrathin Teflon AF2400/γ-alumina composite hollow fiber membranes for dissolved gas analysis[J]. Journal of Membrane Science, 2017, 540: 243-250. |
| [69] | LEE Jongmyeong, KIM Ju Sung, MOON Su-Young, et al. Dimensionally-controlled densification in crosslinked thermally rearranged (XTR) hollow fiber membranes for CO2 capture[J]. Journal of Membrane Science, 2020, 595: 117535. |
| [70] | LI Yukai, SHEN Jie, GUAN Kecheng, et al. PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation[J]. Journal of Membrane Science, 2016, 510: 338-347. |
| [71] | MA Liang-Chih, CHEN Chuan, CHEN Chien-Hua, et al. Gas transport properties of Teflon AF2400/ceramic composite hollow fiber membranes in dissolved-gas-in-oil extraction[J]. Industrial & Engineering Chemistry Research, 2020, 59(12): 5392-5401. |
| [72] | WANG Jialin, DING Yehui, HE Meng, et al. Direct preparation of ultrathin polymer membranes on porous substrates for the separation of helium from methane[J]. Small, 2025, 21(4): 2406440. |
| [73] | LI Siyao, DONG Ruijiao, MUSTEATA Valentina-Elena, et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation[J]. Science, 2022, 377(6614): 1555-1561. |
| [74] | BRIDGE Alexander T, PEDRETTI Benjamin J, BRENNECKE Joan F, et al. Preparation of defect-free asymmetric gas separation membranes with dihydrolevoglucosenone (CyreneTM) as a greener polar aprotic solvent[J]. Journal of Membrane Science, 2022, 644: 120173. |
| [75] | KIM Seungju, HAN Sang Hoon, LEE Young Moo. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture[J]. Journal of Membrane Science, 2012, 403/404: 169-178. |
| [1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
| [2] | XIAO Wenqing,HU Jianqing,TU Weiping. Advance in synthesis and applications of hyperbranched polymers [J]. Chemical Industry and Engineering Progree, 2007, 26(9): 1253-. |
| [3] | TENG Yiwan,WU Fawen ,WANG Hui,LI Lei,ZHANG Zhibing. Research progress of polymeric material of gas separation membrane for gas pair CO2/CH4 [J]. Chemical Industry and Engineering Progree, 2007, 26(8): 1075-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |