Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5108-5119.DOI: 10.16085/j.issn.1000-6613.2024-1052
• Materials science and technology • Previous Articles
LUO Pei(
), LI Ping(
), YANG Wenfeng, LI Wei
Received:2024-06-28
Revised:2024-08-15
Online:2025-09-30
Published:2025-09-25
Contact:
LI Ping
通讯作者:
李萍
作者简介:罗沛(1998—),女,硕士研究生,研究方向为沥青材料。E-mail:luopei981208@163.com。
基金资助:CLC Number:
LUO Pei, LI Ping, YANG Wenfeng, LI Wei. Evaluation of the degree of aging of asphalt based on grey relation analysis and factor analysis[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5108-5119.
罗沛, 李萍, 杨文峰, 李伟. 基于灰色关联与因子分析的沥青老化程度评价[J]. 化工进展, 2025, 44(9): 5108-5119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1052
| 测试指标 | 测试结果 | 技术要求 | |
|---|---|---|---|
| SK | ZH | ||
| 针入度(25℃)/0.1mm | 87 | 85 | 80~100 |
| 延度(10℃)/cm | >100 | >100 | ≥30 |
| 软化点/℃ | 46 | 46 | ≥44 |
| 动力黏度(60℃)/Pa·s | 158 | 155 | ≥140 |
| RTFOT后残留物 | |||
| 质量损失/% | -0.1 | -0.1 | ≤±0.8 |
| 残留针入度比/% | 60 | 65 | ≥57 |
| 残留延度/% | 11 | 10 | ≥8 |
| 测试指标 | 测试结果 | 技术要求 | |
|---|---|---|---|
| SK | ZH | ||
| 针入度(25℃)/0.1mm | 87 | 85 | 80~100 |
| 延度(10℃)/cm | >100 | >100 | ≥30 |
| 软化点/℃ | 46 | 46 | ≥44 |
| 动力黏度(60℃)/Pa·s | 158 | 155 | ≥140 |
| RTFOT后残留物 | |||
| 质量损失/% | -0.1 | -0.1 | ≤±0.8 |
| 残留针入度比/% | 60 | 65 | ≥57 |
| 残留延度/% | 11 | 10 | ≥8 |
| 测试指标 | 测试结果 | 技术要求 | |
|---|---|---|---|
| SK-SBS | ZH-SBS | ||
| 针入度(25℃)/0.1mm | 78 | 75 | 60~80 |
| 延度(5℃)/cm | 49.5 | 47.5 | ≥30 |
| 软化点/℃ | 83 | 82 | ≥55 |
| 布氏旋转黏度(135℃)/Pa·s | 2.5 | 2 | ≤3.0 |
| 贮存稳定性离析/℃ | 1.6 | 2.1 | ≤2.5 |
| 弹性恢复(25℃)/% | 98.2 | 98.6 | ≥65 |
| RTFOT后残留物 | |||
| 质量损失/% | -0.1 | -0.1 | ≤±1.0 |
| 残留针入度比/% | 69 | 72 | ≥60 |
| 残留延度/% | 25 | 24 | ≥20 |
| 测试指标 | 测试结果 | 技术要求 | |
|---|---|---|---|
| SK-SBS | ZH-SBS | ||
| 针入度(25℃)/0.1mm | 78 | 75 | 60~80 |
| 延度(5℃)/cm | 49.5 | 47.5 | ≥30 |
| 软化点/℃ | 83 | 82 | ≥55 |
| 布氏旋转黏度(135℃)/Pa·s | 2.5 | 2 | ≤3.0 |
| 贮存稳定性离析/℃ | 1.6 | 2.1 | ≤2.5 |
| 弹性恢复(25℃)/% | 98.2 | 98.6 | ≥65 |
| RTFOT后残留物 | |||
| 质量损失/% | -0.1 | -0.1 | ≤±1.0 |
| 残留针入度比/% | 69 | 72 | ≥60 |
| 残留延度/% | 25 | 24 | ≥20 |
| 沥青类型 | IC=O | 沥青类型 | IC=O |
|---|---|---|---|
| SK | 0.0260 | ZH | 0.0160 |
| SK-85 | 0.0460 | ZH-85 | 0.0300 |
| SK-145 | 0.0770 | ZH-145 | 0.0720 |
| SK-205 | 0.0880 | ZH-205 | 0.1080 |
| SK-265 | 0.1280 | ZH-265 | 0.1880 |
| SK-325 | 0.1480 | ZH-325 | 0.2000 |
| 沥青类型 | IC=O | 沥青类型 | IC=O |
|---|---|---|---|
| SK | 0.0260 | ZH | 0.0160 |
| SK-85 | 0.0460 | ZH-85 | 0.0300 |
| SK-145 | 0.0770 | ZH-145 | 0.0720 |
| SK-205 | 0.0880 | ZH-205 | 0.1080 |
| SK-265 | 0.1280 | ZH-265 | 0.1880 |
| SK-325 | 0.1480 | ZH-325 | 0.2000 |
| 沥青类型 | IC=O | IC=C |
|---|---|---|
| SK-SBS-85 | 0.0143 | 0.2968 |
| SK-SBS-85 | 0.0283 | 0.3259 |
| SK-SBS-145 | 0.0487 | 0.3566 |
| SK-SBS-205 | 0.0727 | 0.3699 |
| SK-SBS-265 | 0.0925 | 0.3959 |
| SK-SBS-325 | 0.1019 | 0.4639 |
| ZH-SBS | 0.0510 | 0.3041 |
| ZH-SBS-85 | 0.0740 | 0.3351 |
| ZH-SBS-145 | 0.0760 | 0.3804 |
| ZH-SBS-205 | 0.1050 | 0.3821 |
| ZH-SBS-265 | 0.1950 | 0.3876 |
| ZH-SBS-325 | 0.2340 | 0.4838 |
| 沥青类型 | IC=O | IC=C |
|---|---|---|
| SK-SBS-85 | 0.0143 | 0.2968 |
| SK-SBS-85 | 0.0283 | 0.3259 |
| SK-SBS-145 | 0.0487 | 0.3566 |
| SK-SBS-205 | 0.0727 | 0.3699 |
| SK-SBS-265 | 0.0925 | 0.3959 |
| SK-SBS-325 | 0.1019 | 0.4639 |
| ZH-SBS | 0.0510 | 0.3041 |
| ZH-SBS-85 | 0.0740 | 0.3351 |
| ZH-SBS-145 | 0.0760 | 0.3804 |
| ZH-SBS-205 | 0.1050 | 0.3821 |
| ZH-SBS-265 | 0.1950 | 0.3876 |
| ZH-SBS-325 | 0.2340 | 0.4838 |
| 评价指标 | 关联度 | 评价指标 | 关联度 |
|---|---|---|---|
| P | 0.815 | R | 0.776 |
| TR&B | 0.868 | Jnr | 0.751 |
| D | 0.748 | S | 0.895 |
| η | 0.839 | m | 0.851 |
| G* | 0.919 | IC | 0.828 |
| δ | 0.859 |
| 评价指标 | 关联度 | 评价指标 | 关联度 |
|---|---|---|---|
| P | 0.815 | R | 0.776 |
| TR&B | 0.868 | Jnr | 0.751 |
| D | 0.748 | S | 0.895 |
| η | 0.839 | m | 0.851 |
| G* | 0.919 | IC | 0.828 |
| δ | 0.859 |
| 检验项 | 检验值 |
|---|---|
| KMO取样适切性量数 | 0.619 |
| Bartlett球形检验 | |
| 近似卡方 | 103.875 |
| 自由度 | 10 |
| 显著性 | 0.000*** |
| 检验项 | 检验值 |
|---|---|
| KMO取样适切性量数 | 0.619 |
| Bartlett球形检验 | |
| 近似卡方 | 103.875 |
| 自由度 | 10 |
| 显著性 | 0.000*** |
| 成分 | 旋转前方差解释率 | 旋转后方差解释率 | ||||
|---|---|---|---|---|---|---|
| 特征根 | 方差解释率/% | 累积方差解释率/% | 特征根 | 方差解释率/% | 累积方差解释率/% | |
| 1 | 2.547 | 50.932 | 50.932 | 234.09 | 46.818 | 46.818 |
| 2 | 2.109 | 42.179 | 93.111 | 231.463 | 46.293 | 93.111 |
| 3 | 0.163 | 3.252 | 96.362 | — | — | — |
| 4 | 0.123 | 2.468 | 98.831 | — | — | — |
| 5 | 0.058 | 1.169 | 100 | — | — | — |
| 成分 | 旋转前方差解释率 | 旋转后方差解释率 | ||||
|---|---|---|---|---|---|---|
| 特征根 | 方差解释率/% | 累积方差解释率/% | 特征根 | 方差解释率/% | 累积方差解释率/% | |
| 1 | 2.547 | 50.932 | 50.932 | 234.09 | 46.818 | 46.818 |
| 2 | 2.109 | 42.179 | 93.111 | 231.463 | 46.293 | 93.111 |
| 3 | 0.163 | 3.252 | 96.362 | — | — | — |
| 4 | 0.123 | 2.468 | 98.831 | — | — | — |
| 5 | 0.058 | 1.169 | 100 | — | — | — |
| 指标 | 因子1 | 因子2 |
|---|---|---|
| TR&B(X1) | 0.024 | -0.953 |
| G*(X2) | 0.87 | -0.409 |
| δ(X3) | -0.222 | 0.932 |
| S(X4) | 0.78 | 0.599 |
| IC=O(X5) | 0.962 | -0.104 |
| 指标 | 因子1 | 因子2 |
|---|---|---|
| TR&B(X1) | 0.024 | -0.953 |
| G*(X2) | 0.87 | -0.409 |
| δ(X3) | -0.222 | 0.932 |
| S(X4) | 0.78 | 0.599 |
| IC=O(X5) | 0.962 | -0.104 |
| 指标 | 复合因子 | 高温因子 |
|---|---|---|
| TR&B(X1) | -0.029 | -0.415 |
| G*(X2) | 0.358 | -0.143 |
| δ(X3) | -0.058 | 0.397 |
| S(X4) | 0.361 | 0.293 |
| IC=O(X5) | 0.41 | -0.006 |
| 指标 | 复合因子 | 高温因子 |
|---|---|---|
| TR&B(X1) | -0.029 | -0.415 |
| G*(X2) | 0.358 | -0.143 |
| δ(X3) | -0.058 | 0.397 |
| S(X4) | 0.361 | 0.293 |
| IC=O(X5) | 0.41 | -0.006 |
| 沥青类型 | 因子得分 | 沥青类型 | 因子得分 |
|---|---|---|---|
| SK | 0.0004 | ZH | 0.0409 |
| SK-85 | 0.2235 | ZH-85 | 0.1870 |
| SK-145 | 0.3294 | ZH-145 | 0.4410 |
| SK-205 | 0.5205 | ZH-205 | 0.6424 |
| SK-265 | 0.6961 | ZH-265 | 1.0450 |
| SK-325 | 1.0007 | ZH-325 | 1.2084 |
| 沥青类型 | 因子得分 | 沥青类型 | 因子得分 |
|---|---|---|---|
| SK | 0.0004 | ZH | 0.0409 |
| SK-85 | 0.2235 | ZH-85 | 0.1870 |
| SK-145 | 0.3294 | ZH-145 | 0.4410 |
| SK-205 | 0.5205 | ZH-205 | 0.6424 |
| SK-265 | 0.6961 | ZH-265 | 1.0450 |
| SK-325 | 1.0007 | ZH-325 | 1.2084 |
| 沥青类型 | 因子得分 | 沥青类型 | 因子得分 |
|---|---|---|---|
| SK-SBS | -1.3388 | ZH-SBS | -1.4534 |
| SK-SBS-85 | -0.8796 | ZH-SBS-85 | -0.6309 |
| SK-SBS-145 | -0.5627 | ZH-SBS-145 | -0.4928 |
| SK-SBS-205 | -0.5125 | ZH-SBS-205 | -0.3408 |
| SK-SBS-265 | -0.3942 | ZH-SBS-265 | 0.1113 |
| SK-SBS-325 | -0.2319 | ZH-SBS-325 | 0.3909 |
| 沥青类型 | 因子得分 | 沥青类型 | 因子得分 |
|---|---|---|---|
| SK-SBS | -1.3388 | ZH-SBS | -1.4534 |
| SK-SBS-85 | -0.8796 | ZH-SBS-85 | -0.6309 |
| SK-SBS-145 | -0.5627 | ZH-SBS-145 | -0.4928 |
| SK-SBS-205 | -0.5125 | ZH-SBS-205 | -0.3408 |
| SK-SBS-265 | -0.3942 | ZH-SBS-265 | 0.1113 |
| SK-SBS-325 | -0.2319 | ZH-SBS-325 | 0.3909 |
| 沥青类型 | 老化时间/min | 因子得分 | 老化程度 |
|---|---|---|---|
| 基质沥青 | 0~85 | <0.25 | 轻度 |
| 85~205 | 0.25~0.65 | 中度 | |
| 205~325 | >0.65 | 重度 | |
| SBS改性沥青 | 0~85 | <-0.6 | 轻度 |
| 85~205 | -0.6~-0.3 | 中度 | |
| 205~325 | >-0.3 | 重度 |
| 沥青类型 | 老化时间/min | 因子得分 | 老化程度 |
|---|---|---|---|
| 基质沥青 | 0~85 | <0.25 | 轻度 |
| 85~205 | 0.25~0.65 | 中度 | |
| 205~325 | >0.65 | 重度 | |
| SBS改性沥青 | 0~85 | <-0.6 | 轻度 |
| 85~205 | -0.6~-0.3 | 中度 | |
| 205~325 | >-0.3 | 重度 |
| 沥青老化时间 | 针入度下降率/% | 黏度增加率/% |
|---|---|---|
| 基质-85min | 33.05 | 33.36 |
| 基质-145min | 47.44 | 64.45 |
| 基质-205min | 56.71 | 88.8 |
| 基质-265min | 62.07 | 131.09 |
| 基质-325min | 67.07 | 157.9 |
| SBS-85min | 13.65、27.61 | 1.28、1.48 |
| SBS-145min | 31.27、33.94 | 9.38、2.98 |
| SBS-205min | 36.19、42.25 | 19.59、15.53 |
| SBS-265min | 45.87、48.31 | 38.93、31.49 |
| SBS-325min | 49.84、58.73 | 41.43、40.64 |
| 沥青老化时间 | 针入度下降率/% | 黏度增加率/% |
|---|---|---|
| 基质-85min | 33.05 | 33.36 |
| 基质-145min | 47.44 | 64.45 |
| 基质-205min | 56.71 | 88.8 |
| 基质-265min | 62.07 | 131.09 |
| 基质-325min | 67.07 | 157.9 |
| SBS-85min | 13.65、27.61 | 1.28、1.48 |
| SBS-145min | 31.27、33.94 | 9.38、2.98 |
| SBS-205min | 36.19、42.25 | 19.59、15.53 |
| SBS-265min | 45.87、48.31 | 38.93、31.49 |
| SBS-325min | 49.84、58.73 | 41.43、40.64 |
| 沥青种类 | 指标变化率 | 老化程度 | ||
|---|---|---|---|---|
| 轻度 | 中度 | 重度 | ||
| 基质沥青 | 针入度下降率/% | 0~40 | 40~70 | >70 |
| 黏度增加率/% | ||||
| 因子得分 | <0.25 | 0.25~0.65 | >0.65 | |
| SBS改性沥青 | 针入度下降率/% | 0~30 | 30~40 | >40 |
| 黏度增加率/% | 0~5 | 5~20 | >20 | |
| 因子得分 | <-0.6 | -0.6~-0.3 | >-0.3 | |
| 沥青种类 | 指标变化率 | 老化程度 | ||
|---|---|---|---|---|
| 轻度 | 中度 | 重度 | ||
| 基质沥青 | 针入度下降率/% | 0~40 | 40~70 | >70 |
| 黏度增加率/% | ||||
| 因子得分 | <0.25 | 0.25~0.65 | >0.65 | |
| SBS改性沥青 | 针入度下降率/% | 0~30 | 30~40 | >40 |
| 黏度增加率/% | 0~5 | 5~20 | >20 | |
| 因子得分 | <-0.6 | -0.6~-0.3 | >-0.3 | |
| [1] | 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. |
| Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering Research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. | |
| [2] | 郭猛, 任鑫, 焦峪波, 等. 沥青及沥青混合料老化与抗老化研究综述[J]. 中国公路学报, 2022, 35(4): 41-59. |
| GUO Meng, REN Xin, JIAO Yubo, et al. Review of aging and antiaging of asphalt and asphalt mixtures[J]. China Journal of Highway and Transport, 2022, 35(4): 41-59. | |
| [3] | 况栋梁, 马小军, 马晓燕, 等. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 280-287. |
| KUANG Dongliang, MA Xiaojun, MA Xiaoyan, et al. Effect of waste oil residue regenerators on dynamic mechanical properties and component migration of aged asphalt[J]. Materials Reports, 2024, 38(2): 280-287. | |
| [4] | 李萍, 慕博博, 念腾飞, 等. 红外光谱(FTIR)和荧光显微镜(FM)表征再生剂在老化沥青中的扩散行为[J]. 材料科学与工程学报, 2022, 40(5): 767-773, 784. |
| LI Ping, MU Bobo, NIAN Tengfei, et al. Characterization the diffusion behavior of regenerant in aged asphalt by FTIR and FM[J]. Journal of Materials Science and Engineering, 2022, 40(5): 767-773, 784. | |
| [5] | 刘瑞瑞, 周涛, 谭婷, 等. 蓖麻基生物油对不同老化程度沥青的再生作用[J]. 中南大学学报(自然科学版), 2023, 54(6): 2271-2281. |
| LIU Ruirui, ZHOU Tao, TAN Ting, et al. Rejuvenation effect of castor-based bio-oil on asphalt with different aging levels[J]. Journal of Central South University (Science and Technology), 2023, 54(6): 2271-2281. | |
| [6] | 屈鑫, 丁鹤洋, 汪海年. 道路沥青老化评价方法研究进展[J]. 中国公路学报, 2022, 35(6): 205-220. |
| QU Xin, DING Heyang, WANG Hainian. The state-of-the-art review on evaluation methods of asphalt binder aging[J]. China Journal of Highway and Transport, 2022, 35(6): 205-220. | |
| [7] | 王珺卓, 徐国庆, 张恒龙, 等. 不同热氧强度作用下SBS改性沥青性能的演变规律[J]. 公路交通科技, 2020, 37(10): 35-45. |
| WANG Junzhuo, XU Guoqing, ZHANG Henglong, et al. Evolution rule of SBS modified asphalt performance under different thermal-oxidative intensities[J]. Journal of Highway and Transportation Research and Development, 2020, 37(10): 35-45. | |
| [8] | 杨采迪, 龚兴宇, 韩晓斌, 等. 热老化对不同沥青组成结构和性能的影响[J]. 科学技术与工程, 2023, 23(20): 8839-8845. |
| YANG Caidi, GONG Xingyu, HAN Xiaobin, et al. Influence of thermal aging on the composition structure and properties of different asphalts[J]. Science Technology and Engineering, 2023, 23(20): 8839-8845. | |
| [9] | ZHANG Henglong, CHEN Zihao, XU Guoqing, et al. Evaluation of aging behaviors of asphalt binders through different rheological indices[J]. Fuel, 2018, 221: 78-88. |
| [10] | 邢成炜, 刘黎萍, 刘威. 线型SBS改性沥青不同时程老化流变特征及阶段判别[J]. 东南大学学报(自然科学版), 2019, 49(2): 380-387. |
| XING Chengwei, LIU Liping, LIU Wei. Rheological characteristics and phase discrimination of linear SBS modified asphalt under different time aging[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(2): 380-387. | |
| [11] | LIU Linlin, LU Yong, LIU Aihua, et al. Analysis of asphalt aging behavior evaluation method based on infrared spectrum[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012044. |
| [12] | 张艳珍, 郭庆林, 杨邯超, 等. 老化前后沥青官能团指数与常用指标相关性分析[J]. 合成材料老化与应用, 2022, 51(1): 5-7. |
| ZHANG Yanzhen, GUO Qinglin, YANG Hanchao, et al. Analysis on the correlation between functional group index and common properties of asphalt before and after aging[J]. Synthetic Materials Aging and Application, 2022, 51(1): 5-7. | |
| [13] | 王立路, 成高立, 汪海年, 等. 植物基生物沥青化学组成与路用性能关联性研究[J]. 化工新型材料, 2022, 50(10): 270-274. |
| WANG Lilu, CHENG Gaoli, WANG Hainian, et al. Study on the correlation between chemical composition and road performance of plant-based bio-asphalt[J]. New Chemical Materials, 2022, 50(10): 270-274. | |
| [14] | 刘成, 范思远, 张建峰, 等. 沥青材料微观组成与宏观性质关联性研究[J]. 当代化工, 2023, 52(1): 62-66. |
| LIU Cheng, FAN Siyuan, ZHANG Jianfeng, et al. Research on the correlation between micro-composition and macro-property of asphalt[J]. Contemporary Chemical Industry, 2023, 52(1): 62-66. | |
| [15] | WANG Jiayu, WANG Tao, HOU Xiangdao, et al. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction[J]. Fuel, 2019, 238: 320-330. |
| [16] | TIAN Rongyan, LUO Haoyuan, HUANG Xiaoming, et al. Correlation analysis between mechanical properties and fractions composition of oil-rejuvenated asphalt[J]. Materials, 2022, 15(5): 1889. |
| [17] | 胡松山, 覃润浦, 李辉, 等. 橡胶沥青性能测试技术的应用[J]. 复合材料学报, 2018, 35(8): 2260-2273. |
| HU Songshan, QIN Runpu, LI Hui, et al. Application of rubber asphalt performance test technology[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2260-2273. | |
| [18] | TIAN Xiaoge, LI Guangyao, LU Xuerong, et al. Study on the short-term aging behavior of asphalt based on PCA and LSM analysis[J]. Journal of Materials in Civil Engineering, 2022, 34(8): 04022181. |
| [19] | 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: [S]. 北京: 人民交通出版社, 2011.Ministry of Transport of the People's Republic of China: [S]. Beijing: China Communications Press, 2011. |
| [20] | LAMONTAGNE J, DUMAS P, MOUILLET V, et al. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens[J]. Fuel, 2001, 80(4): 483-488. |
| [21] | 白中良, 李萍, 王晖, 等. 基于响应曲面法的沥青再生剂配比设计以及抗老化性能[J]. 化工进展, 2025, 44(3):1607-1618. |
| BAI Zhongliang, LI Ping, WANG Hui, et al. Proportion design and anti-Aging performance of asphalt rejuvenator based on response surface methodology[J]. Chemical Industry and Engineering Progress, 2025, 44(3):1607-1618. |
| [1] | YUE Lei, LI Peilong, DING Zhan, XIA Lei, AN Linyu. Research progress on characterization methods of diffusion behavior of asphalt rejuvenators [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2068-2080. |
| [2] | ZHANG Dongxu, YAO Qiang, HEI Shunan, LI Weidong, LIU Cheng, LI Zhijun, SONG Lechun, HAN Zhaoming. Compatibility and performance analysis of waste plastic modified asphalts: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1651-1665. |
| [3] | LIU Yanyan, ZHOU Shuai, HE Ziqi, LYU Yi. Research progress on test methods and inhibition strategies of asphalt fumes [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1632-1650. |
| [4] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [5] | DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430. |
| [6] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
| [7] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| [8] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
| [9] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
| [10] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
| [11] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
| [12] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
| [13] | LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. |
| [14] | ZHANG Xincheng, HE Lin, SUI Hong, LI Xingang. Demulsification process and enhancement by viscosity reduction for water-in-heavy oil emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544. |
| [15] | LIU Jing, ZHENG Xinguo, LI Tiejun, WANG Caiping, ZHAO Yanxu, LI Ying, LOU Liangwei, SHEN Wei. Mechanical properties and micromorphology of redispersible emulsified asphalt powder modified cement mortar [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2015-2021. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |