Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4628-4647.DOI: 10.16085/j.issn.1000-6613.2024-1624
• Process systems modeling and simulation • Previous Articles
TANG Jian1,2(
), CUI Wangwang1,2, CHEN Jiakun1,2, WANG Tianzheng1,2, QIAO Junfei1,2
Received:2024-10-10
Revised:2024-11-15
Online:2025-09-08
Published:2025-08-25
Contact:
TANG Jian
英全生命周期预测模型的构建:耦合数值仿真和模糊森林回归的方法
汤健1,2(
), 崔旺旺1,2, 陈佳昆1,2, 王天峥1,2, 乔俊飞1,2
通讯作者:
汤健
作者简介:汤健(1974—),男,教授,博士生导师,研究方向为固废焚烧智能控制。E-mail:freeflytang@bjut.edu.cn。
基金资助:CLC Number:
TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647.
汤健, 崔旺旺, 陈佳昆, 王天峥, 乔俊飞. 城市固废焚烧过程二
英全生命周期预测模型的构建:耦合数值仿真和模糊森林回归的方法[J]. 化工进展, 2025, 44(8): 4628-4647.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1624
| 事项 | 所用方法 |
|---|---|
| 离散化方法 | 一阶迎风差分 |
| 节点数 | 20 |
| 物料平衡 | 仅对流 |
| 动量平衡 | Kaman-Kozeny方程 |
| 能量平衡 | 等温 |
| 动力学模型 | 线性集总阻力 |
| 传质系数 | 常数 |
| 等温线 | 朗缪尔Ⅰ型 |
| 事项 | 所用方法 |
|---|---|
| 离散化方法 | 一阶迎风差分 |
| 节点数 | 20 |
| 物料平衡 | 仅对流 |
| 动量平衡 | Kaman-Kozeny方程 |
| 能量平衡 | 等温 |
| 动力学模型 | 线性集总阻力 |
| 传质系数 | 常数 |
| 等温线 | 朗缪尔Ⅰ型 |
| 参数 | 数值 |
|---|---|
| 额定处理量/t·d-1 | 800 |
| 实际处理量/t·d-1 | 624 |
| 炉排类型 | — |
| 炉排长×宽/m | 11×12.9 |
| 炉排速度/m·h-1 | 8 |
| 一次风流量(标准状况)/m3·h-1 | 65400 |
| 二次风流量(标准状况)/m3·h-1 | 7500 |
| 一次风温度/℃ | 200 |
| 一次风分布/% | 24.31、43.35、19.27、13.07 |
| 参数 | 数值 |
|---|---|
| 额定处理量/t·d-1 | 800 |
| 实际处理量/t·d-1 | 624 |
| 炉排类型 | — |
| 炉排长×宽/m | 11×12.9 |
| 炉排速度/m·h-1 | 8 |
| 一次风流量(标准状况)/m3·h-1 | 65400 |
| 二次风流量(标准状况)/m3·h-1 | 7500 |
| 一次风温度/℃ | 200 |
| 一次风分布/% | 24.31、43.35、19.27、13.07 |
| 工业分析(收到基) | 质量分数/% | 元素分析(干燥基) | 质量分数/% |
|---|---|---|---|
| 水分 | 38.48 | C | 50.55 |
| 挥发分 | 41.80 | H | 7.79 |
| 固定碳 | 6.56 | O | 18.80 |
| 灰分 | 13.16 | N | 0.40 |
| S | 0.27 | ||
| Cl | 0.79 |
| 工业分析(收到基) | 质量分数/% | 元素分析(干燥基) | 质量分数/% |
|---|---|---|---|
| 水分 | 38.48 | C | 50.55 |
| 挥发分 | 41.80 | H | 7.79 |
| 固定碳 | 6.56 | O | 18.80 |
| 灰分 | 13.16 | N | 0.40 |
| S | 0.27 | ||
| Cl | 0.79 |
| 软件 | 参数 | 数值 |
|---|---|---|
| FLIC | 炉排速度/m·h-1 | 7.5 |
| FLIC和Aspen Plus | 进料量/t·d-1 | 624 |
| 一次风量(标准状况)/m3·h-1 | 65400 | |
| 一次风温度/℃ | 200 | |
| Aspen Plus | 二次风量(标准状况)/m3·h-1 | 7500 |
| 二次风温度/℃ | 25 | |
| 活性炭/kg·h-1 | 17 | |
| 气体组分 | 见 | |
| DXN脱除率 | 见 | |
| Aspen Adsorption | 烟气温度/℃ | 170 |
| 吸附剂粒径/mm | 1.05 | |
| 吸附剂密度/kg·m-3 | 450 | |
| 吸附床半径/m | 0.35 | |
| 吸附床高度/m | 0.01 |
| 软件 | 参数 | 数值 |
|---|---|---|
| FLIC | 炉排速度/m·h-1 | 7.5 |
| FLIC和Aspen Plus | 进料量/t·d-1 | 624 |
| 一次风量(标准状况)/m3·h-1 | 65400 | |
| 一次风温度/℃ | 200 | |
| Aspen Plus | 二次风量(标准状况)/m3·h-1 | 7500 |
| 二次风温度/℃ | 25 | |
| 活性炭/kg·h-1 | 17 | |
| 气体组分 | 见 | |
| DXN脱除率 | 见 | |
| Aspen Adsorption | 烟气温度/℃ | 170 |
| 吸附剂粒径/mm | 1.05 | |
| 吸附剂密度/kg·m-3 | 450 | |
| 吸附床半径/m | 0.35 | |
| 吸附床高度/m | 0.01 |
| 气体组分 | 摩尔分数/% | 气体组分 | 摩尔分数/% |
|---|---|---|---|
| CH4 | 0.01017 | CO | 0.03022 |
| CO2 | 0.06831 | O2 | 0.07710 |
| N2 | 0.49617 | H2O | 0.29350 |
| H2 | 0.01956 | NO2 | 8.96×10-6 |
| 气体组分 | 摩尔分数/% | 气体组分 | 摩尔分数/% |
|---|---|---|---|
| CH4 | 0.01017 | CO | 0.03022 |
| CO2 | 0.06831 | O2 | 0.07710 |
| N2 | 0.49617 | H2O | 0.29350 |
| H2 | 0.01956 | NO2 | 8.96×10-6 |
| 因素 | 5个区域水平值 |
|---|---|
| 炉排速度/m·h-1 | 7,7.5,8,8.5,9 |
| 进料量/t·h-1 | 24.2,24.7,25.2,25.7,26.2 |
| 干燥段一次风量(标准状况)/m3·min-1 | 268,274,280,286,292 |
| 燃烧1段一次风量(标准状况)/m3·min-1 | 477,488,499,510,521 |
| 燃烧2段一次风量(标准状况)/m3·min-1 | 211,216,221,226,231 |
| 燃烬段一次风量(标准状况)/m3·min-1 | 144,147,150,153,156 |
| 粒径/mm | 15,20,25,30,35 |
| 颗粒混合系数 | 2×10-6,3×10-6,4×10-6,5×10-6,6×10-6 |
| 含水量/% | 48,49.75,51.5,53.25,55 |
| C∶O | 58∶33,59∶32,60∶31,61∶30,62∶29 |
| 因素 | 5个区域水平值 |
|---|---|
| 炉排速度/m·h-1 | 7,7.5,8,8.5,9 |
| 进料量/t·h-1 | 24.2,24.7,25.2,25.7,26.2 |
| 干燥段一次风量(标准状况)/m3·min-1 | 268,274,280,286,292 |
| 燃烧1段一次风量(标准状况)/m3·min-1 | 477,488,499,510,521 |
| 燃烧2段一次风量(标准状况)/m3·min-1 | 211,216,221,226,231 |
| 燃烬段一次风量(标准状况)/m3·min-1 | 144,147,150,153,156 |
| 粒径/mm | 15,20,25,30,35 |
| 颗粒混合系数 | 2×10-6,3×10-6,4×10-6,5×10-6,6×10-6 |
| 含水量/% | 48,49.75,51.5,53.25,55 |
| C∶O | 58∶33,59∶32,60∶31,61∶30,62∶29 |
| 因素 | 5个区域水平值 | 因素 | 5个区域水平值 |
|---|---|---|---|
| 炉排速度/m·h-1 | 6.6,6.7,6.8,6.9,7.0 | 进料量/t·h-1 | 24.2,24.3,24.4,24.5,24.6 |
| 7.1,7.2,7.3,7.4,7.5 | 24.7,27.8,24.9,25.0,25.1 | ||
| 7.6,7.7,7.8,7.9,8.0 | 25.2,25.3,25.4,25.5,25.6 | ||
| 8.1,8.2,8.3,8.4,8.5 | 25.7,25.8,25.9,26.0,26.1 | ||
| 8.6,8.7,8.8,8.9,9.0 | 26.2,26.3,26.4,26.5,26.6 | ||
| 干燥段风量(标准状况)/m3·min-1 | 255.0,256.8,258.6,260.4,262.2 | 燃烧1段风量(标准状况)/m3·min-1 | 455.0,458.2,461.4,464.6,467.8 |
| 264.0,265.8,267.6,269.4,271.2 | 471.0,474.2,477.4,480.6,483.8 | ||
| 273.0,274.8,276.6,278.4,280.2 | 487.0,490.2,493.4,496.6,499.8 | ||
| 282.0,283.8,285.6,287.4,289.2 | 503.0,506.2,509.0,513.0,515.8 | ||
| 291.0,292.8,294.6,296.4,298.2 | 519.0,522.2,525.4,528.6,531.8 | ||
| 燃烧2段风量(标准状况)/m3·min-1 | 203.0,204.4,205.8,207.2,208.6 | 燃烬段风量(标准状况)/m3·min-1 | 137,138,139,140,141 |
| 210.0,211.4,212.8,214.2,215.6 | 142,143,144,145,146 | ||
| 217.0,218.4,219.8,221.2,222.6 | 147,148,149,150,151 | ||
| 224.0,225.4,227.0,228.0,229.6 | 152,153,154,155,156 | ||
| 231.0,232.4,233.8,235.2,236.6 | 157,158,159,160,161 |
| 因素 | 5个区域水平值 | 因素 | 5个区域水平值 |
|---|---|---|---|
| 炉排速度/m·h-1 | 6.6,6.7,6.8,6.9,7.0 | 进料量/t·h-1 | 24.2,24.3,24.4,24.5,24.6 |
| 7.1,7.2,7.3,7.4,7.5 | 24.7,27.8,24.9,25.0,25.1 | ||
| 7.6,7.7,7.8,7.9,8.0 | 25.2,25.3,25.4,25.5,25.6 | ||
| 8.1,8.2,8.3,8.4,8.5 | 25.7,25.8,25.9,26.0,26.1 | ||
| 8.6,8.7,8.8,8.9,9.0 | 26.2,26.3,26.4,26.5,26.6 | ||
| 干燥段风量(标准状况)/m3·min-1 | 255.0,256.8,258.6,260.4,262.2 | 燃烧1段风量(标准状况)/m3·min-1 | 455.0,458.2,461.4,464.6,467.8 |
| 264.0,265.8,267.6,269.4,271.2 | 471.0,474.2,477.4,480.6,483.8 | ||
| 273.0,274.8,276.6,278.4,280.2 | 487.0,490.2,493.4,496.6,499.8 | ||
| 282.0,283.8,285.6,287.4,289.2 | 503.0,506.2,509.0,513.0,515.8 | ||
| 291.0,292.8,294.6,296.4,298.2 | 519.0,522.2,525.4,528.6,531.8 | ||
| 燃烧2段风量(标准状况)/m3·min-1 | 203.0,204.4,205.8,207.2,208.6 | 燃烬段风量(标准状况)/m3·min-1 | 137,138,139,140,141 |
| 210.0,211.4,212.8,214.2,215.6 | 142,143,144,145,146 | ||
| 217.0,218.4,219.8,221.2,222.6 | 147,148,149,150,151 | ||
| 224.0,225.4,227.0,228.0,229.6 | 152,153,154,155,156 | ||
| 231.0,232.4,233.8,235.2,236.6 | 157,158,159,160,161 |
| 指标 | 方法 | 训练集 | 验证集 | 测试集 |
|---|---|---|---|---|
| RMSE | DT | 2.31×10-2±6.55×10-7 | 2.65×10-2±1.21×10-6 | 2.57×10-2±1.25×10-6 |
| RF | 1.65×10-2±3.31×10-8 | 2.36×10-2±5.57×10-9 | 2.25×10-2±5.37×10-9 | |
| DFR | 1.35×10-2±2.27×10-8 | 2.09×10-2±7.63×10-9 | 2.19×10-2±1.31×10-8 | |
| BPNN | 2.34×10-2±4.76×10-6 | 2.44×10-2±5.24×10-6 | 2.38×10-2±5.74×10-6 | |
| TSFFR | 1.87×10-2±7.75×10-7 | 2.29×10-2±3.82×10-7 | 2.23×10-2±3.28×10-7 | |
| MAE | DT | 1.78×10-2±4.20×10-7 | 2.10×10-2±8.20×10-7 | 2.04×10-2±7.91×10-7 |
| RF | 1.29×10-2±2.15×10-8 | 1.92×10-2±4.13×10-9 | 1.83×10-2±6.57×10-9 | |
| DFR | 1.05×10-2±1.66×10-8 | 1.67×10-2±7.48×10-9 | 1.73×10-2±1.21×10-8 | |
| BPNN | 1.86×10-2±3.24×10-6 | 1.95×10-2±3.40×10-6 | 1.91×10-2±3.52×10-6 | |
| TSFFR | 1.47×10-2±4.84×10-7 | 1.84×10-2±1.60×10-7 | 1.77×10-2±1.31×10-7 |
| 指标 | 方法 | 训练集 | 验证集 | 测试集 |
|---|---|---|---|---|
| RMSE | DT | 2.31×10-2±6.55×10-7 | 2.65×10-2±1.21×10-6 | 2.57×10-2±1.25×10-6 |
| RF | 1.65×10-2±3.31×10-8 | 2.36×10-2±5.57×10-9 | 2.25×10-2±5.37×10-9 | |
| DFR | 1.35×10-2±2.27×10-8 | 2.09×10-2±7.63×10-9 | 2.19×10-2±1.31×10-8 | |
| BPNN | 2.34×10-2±4.76×10-6 | 2.44×10-2±5.24×10-6 | 2.38×10-2±5.74×10-6 | |
| TSFFR | 1.87×10-2±7.75×10-7 | 2.29×10-2±3.82×10-7 | 2.23×10-2±3.28×10-7 | |
| MAE | DT | 1.78×10-2±4.20×10-7 | 2.10×10-2±8.20×10-7 | 2.04×10-2±7.91×10-7 |
| RF | 1.29×10-2±2.15×10-8 | 1.92×10-2±4.13×10-9 | 1.83×10-2±6.57×10-9 | |
| DFR | 1.05×10-2±1.66×10-8 | 1.67×10-2±7.48×10-9 | 1.73×10-2±1.21×10-8 | |
| BPNN | 1.86×10-2±3.24×10-6 | 1.95×10-2±3.40×10-6 | 1.91×10-2±3.52×10-6 | |
| TSFFR | 1.47×10-2±4.84×10-7 | 1.84×10-2±1.60×10-7 | 1.77×10-2±1.31×10-7 |
| 参数 | GSC | GGC | GHT | GLT | GGE |
|---|---|---|---|---|---|
| 进料量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 减小 |
| 炉排速度 | 增大 | 增大 | 先增大后减小 | 增大 | 先减小后增大 |
| 一次风量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 增大 |
| 含水量 | 增大 | 增大 | 先减小后增大 | 增大 | 增大 |
| 颗粒混合系数 | 增大 | 先减小后增大 | 增大 | 先减小后增大再减小 | 增大 |
| 粒径 | 增大 | 先增大后减小 | 增大 | 先增大后减小再增大 | 先减小后增大 |
| 参数 | GSC | GGC | GHT | GLT | GGE |
|---|---|---|---|---|---|
| 进料量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 减小 |
| 炉排速度 | 增大 | 增大 | 先增大后减小 | 增大 | 先减小后增大 |
| 一次风量 | 增大 | 增大 | 先增大后减小 | 先减小后增大再减小 | 增大 |
| 含水量 | 增大 | 增大 | 先减小后增大 | 增大 | 增大 |
| 颗粒混合系数 | 增大 | 先减小后增大 | 增大 | 先减小后增大再减小 | 增大 |
| 粒径 | 增大 | 先增大后减小 | 增大 | 先增大后减小再增大 | 先减小后增大 |
| [1] | SHAH Anil V, SRIVASTAVA Vijay Kumar, MOHANTY Swayansu Sabyasachi, et al. Municipal solid waste as a sustainable resource for energy production: State-of-the-art review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105717. |
| [2] | 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059. |
| TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta Automatica Sinica, 2023, 49(10): 2019-2059. | |
| [3] | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二𫫇英排放浓度检测方法综述[J]. 自动化学报, 2020, 46(6): 1063-1089. |
| QIAO Junfei, GUO Zihao, TANG Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. | |
| [4] | ALTARAWNEH Mohammednoor, DLUGOGORSKI Bogdan Z, KENNEDY Eric M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)[J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. |
| [5] | ZHUANG Jiabin, TANG Jian, ALJERF Loai. Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate[J]. Fuel, 2022, 320: 123826. |
| [6] | YANG Y B, GOH Y R, ZAKARIA R, et al. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management, 2002, 22(4): 369-380. |
| [7] | ISMAIL T M, EL-SALAM M ABD, EL-KADY M A, et al. Three dimensional model of transport and chemical late phenomena on a MSW incinerator[J]. International Journal of Thermal Sciences, 2014, 77: 139-157. |
| [8] | YAN Mi, TIAN Xinyi, ANTONI, et al. Influence of multi-temperature primary air on the characteristics of MSW combustion in a moving grate incinerator[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106690. |
| [9] | SUN Yong, QIN Zhen, TANG Yuting, et al. Techno-environmental-economic assessment on municipal solid waste to methanol coupling with/without solid oxygen electrolysis cell unit[J]. Process Safety and Environmental Protection, 2022, 161: 611-628. |
| [10] | TULAPHOL Sarttrawut, BUNSAN Sond, CHEN Ho Wen, et al. Capture of dioxin derivatives on activated carbons: Breakthrough curve modelling and isotherm parameters[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 156. |
| [11] | BUNSAN Sond, CHEN Wei-Yea, CHEN Ho-Wen, et al. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks[J]. Chemosphere, 2013, 92(3): 258-264. |
| [12] | CHEN Ken, PENG Yaqi, LU Shengyong, et al. Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators[J]. Chemosphere, 2021, 274: 129802. |
| [13] | XIONG Shijian, PENG Yaqi, LU Shengyong, et al. Generalized prediction and optimal operating parameters of PCDD/F emissions by explainable Bayesian support vector regression[J]. Waste Management, 2021, 135: 437-447. |
| [14] | XIA Heng, TANG Jian, YU Wen, et al. Takagi Sugeno fuzzy regression trees with application to complex industrial modeling[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(7): 2210-2224. |
| [15] | 应雨轩, 林晓青, 吴昂键, 等. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900. |
| YING Yuxuan, LIN Xiaoqing, WU Angjian, et al. Review and outlook on municipal solid waste smart incineration[J]. CIESC Journal, 2021, 72(2): 886-900. | |
| [16] | WEI Junxiao, LI Huan, LIU Jianguo. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China[J]. Environmental Pollution, 2021, 289: 117798. |
| [17] | 郭子豪. 面向城市固废焚烧过程的二𫫇英排放浓度软测量[D]. 北京: 北京工业大学, 2020. |
| GUO Zihao. Soft sensing of dioxin emission concentration for municipal solid waste incineration process[D]. Beijing: Beijing University of Technology, 2020. | |
| [18] | 陈怀俊, 牛芳, 王乃继. 垃圾焚烧处置中二𫫇英和重金属污染控制技术进展[J]. 洁净煤技术, 2021, 27(6): 59-75. |
| CHEN Huaijun, NIU Fang, WANG Naiji. Research progress of dioxins and heavy metal pollution control technology in MSWI[J]. Clean Coal Technology, 2021, 27(6): 59-75. | |
| [19] | ZHONG Rigang, CAI Jianjun, YAN Feng, et al. Process tracing and partitioning behaviors of PCDD/Fs in the post-combustion zone from a full-scale municipal solid waste incinerator in Southern China[J]. Environmental Technology & Innovation, 2021, 23: 101789. |
| [20] | PENG Yaqi, CHEN Jinghao, LU Shengyong, et al. Chlorophenols in municipal solid waste incineration: A review[J]. Chemical Engineering Journal, 2016, 292: 398-414. |
| [21] | ZHANG Sheng, CHEN Zhiliang, LIN Xiaoqing, et al. Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment[J]. Fuel, 2020, 279: 118410. |
| [22] | BUEKENS Alfons, ZHANG Mengmei. De novo synthesis of dioxins: A review[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 63. |
| [23] | LOMNICKI Slawomir, DELLINGER Barry. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface[J]. Journal of Physical Chemistry A, 2003, 107(22): 4387-4395. |
| [24] | YANG Y B, YAMAUCHI H, NASSERZADEH V, et al. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed[J]. Fuel, 2003, 82(18): 2205-2221. |
| [25] | SMOOT L D, PRATT D T. Pulverized-coal combustion and gasification: Theory and applications for continuous flow processes [M]. New York: Springer, 2013. |
| [26] | YANG YAO bin, SHARIFI Vida N, SWITHENBANK Jim. Converting moving-grate incineration from combustion to gasification Numerical simulation of the burning characteristics[J]. Waste Management, 2007, 27(5): 645-655. |
| [27] | HOWARD J B, WILLIAMS G C, FINE D H. Kinetics of carbon monoxide oxidation in postflame gases[J]. Symposium (International) on Combustion, 1973, 14(1): 975-986. |
| [28] | HUNT M L, TIEN C L. Non-darcian convection in cylindrical packed beds[J]. Journal of Heat Transfer, 1988, 110(2): 378-384. |
| [29] | VAFAI Kambiz, SOZEN Mehmet. Analysis of energy and momentum transport for fluid flow through a porous bed[J]. Journal of Heat Transfer, 1990, 112(3): 690-699. |
| [30] | ARTHUR J R. Reactions between carbon and oxygen[J]. Transactions of the Faraday Society, 1951, 47: 164-178. |
| [31] | CHEN Jiakun, TANG Jian, XIA Heng, et al. A non-manipulated variable sensitivity analysis of solid-phase combustion in the furnace of municipal solid-waste incineration process based on the biorthogonal double orthogonal numerical simulation experiment[J]. Sustainability, 2023, 15(19): 14159. |
| [32] | MORI Kozo, MATSUI Hisaji, YAMAGUCHI Naoki, et al. Multi-component behavior of fixed-bed adsorption of dioxins by activated carbon fiber[J]. Chemosphere, 2005, 61(7): 941-946. |
| [33] | ZHOU Xujian, LI Xiaodong, NI Mingjiang, et al. Removal efficiencies for 136 tetra- through octa-chlorinated dibenzo-p-dioxins and dibenzofuran congeners with activated carbons[J]. Environmental Science and Pollution Research, 2015, 22(22): 17691-17696. |
| [1] | GAO Jiawei, HUANG Yaji, WANG Sheng, ZHU Zhicheng, XIAO Yixuan, SONG Huikang, LIU Jun, QI Shuaijie, ZHANG Yuyao, ZHAO Jiaqi. Effects of silicon-aluminum mineral components on the melting characteristics and the solidification of heavy metal of municipal solid waste incineration fly ash [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1716-1725. |
| [2] | LIANG Yongqi, TANG Jian, XIA Heng, CHEN Jiakun, QIAO Junfei. Modeling and analysis of particulate matter concentration in incinerator under benchmark conditions based on coupled numerical simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 106-120. |
| [3] | KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, WANG Biao, YIN Shui′e, CHEN Bing, LU Jiawei, ZHANG Yuan, FENG Lele, WANG Hongtao, XU Haiyun. Treatment technologies of fly ash from municipal solid waste incineration [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. |
| [4] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
| [5] | CHEN Jiakun, TANG Jian, XIA Heng, QIAO Junfei. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072. |
| [6] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
| [7] | JIANG Xuguang, CHEN Qian, ZHAO Xiaoli, KONG Litan. A review on hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4473-4485. |
| [8] | SUN Li, WU Xin, LIU Daojie, LI Junhui, LI Shi, DU Yiwei. Stabilization of heavy metals in municipal solid waste incineration fly ash using thermal treatment with silica-based material [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3514-3522. |
| [9] | LUO Aqun, LIU Shaoguang, LIN Wensong, GU Dongliang, CHEN Chengwu. Progress of formation mechanisms and emission reduction methods of PCDD/Fs [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 910-916. |
| [10] | XIONG Zuhong,FAN Genyu,LU Min,GUO Huafang,CHEN Yong. Treatment technologies of municipal solid waste incinerator fly ash: A review [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1678-1684. |
| [11] |
XIAO Zhiwei,LI Xiaodong,CHEN Tong,YAN Jianhua,NI Mingjiang.
PCDD/Fs distribution characteristics in pyrolysis of medical waste with different composition and chlorine content [J]. Chemical Industry and Engineering Progree, 2010, 29(7): 1358-. |
| [12] | CHEN Tao1,SUN Shuiyu1,LIU Jingyong1,2,CHEN Minting1. Progress in the treatment of secondary pollutants generated from municipal sewage sludge incineration [J]. Chemical Industry and Engineering Progree, 2010, 29(1): 157-. |
| [13] | ZHENG Xiong,CHEN Yinguang. Advances in study of concentrations of dioxin-like compounds in sewage sludge [J]. Chemical Industry and Engineering Progree, 2008, 27(12): 1954-. |
| [14] | MA Hongting,ZHANG Yufeng. Influence factors and control means of de novo synthesis of PCDD/F [J]. Chemical Industry and Engineering Progree, 2006, 25(5): 557-. |
| [15] |
OU Yuxiang,ZHAO Yi,FANG Xiaomin . Recycling and reuse of brominated flame-retardant plastics [J]. Chemical Industry and Engineering Progree, 2006, 25(4): 362-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |