Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4473-4485.DOI: 10.16085/j.issn.1000-6613.2020-1776
• Resources and environmental engineering • Previous Articles Next Articles
JIANG Xuguang1(), CHEN Qian1, ZHAO Xiaoli2, KONG Litan2
Received:
2020-09-04
Online:
2021-08-12
Published:
2021-08-05
Contact:
JIANG Xuguang
通讯作者:
蒋旭光
作者简介:
蒋旭光(1965—),男,教授,博士生导师,主要从事废弃物能源化和资源化等方面的研究。E-mail:基金资助:
CLC Number:
JIANG Xuguang, CHEN Qian, ZHAO Xiaoli, KONG Litan. A review on hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4473-4485.
蒋旭光, 陈钱, 赵晓利, 孔莉倓. 水热法稳定垃圾焚烧飞灰中重金属研究进展[J]. 化工进展, 2021, 40(8): 4473-4485.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1776
1 | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistical Press, 2018. | |
2 | 章骅, 于思源, 邵立明, 等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学, 2018, 39(1): 467-476. |
ZHANG Hua, YU Siyuan, SHAO Liming, et al. Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J]. Environmental Science, 2018, 39(1): 467-476. | |
3 | MA Wenchao, CHEN Dongmei, PAN Minhui, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177. |
4 | SUN Yangyu, XU Congbin, YANG Wenjie, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: behaviors and mechanisms[J]. Journal of the Chinese Chemical Society, 2019, 66(2): 188-196. |
5 | LINDBERG D, MOLIN C, HUPA M. Thermal treatment of solid residues from WtE units: a review[J]. Waste Management, 2015, 37: 82-94. |
6 | 熊祖鸿, 范根育, 鲁敏, 等. 垃圾焚烧飞灰处置技术研究进展[J]. 化工进展, 2013, 32(7): 1678-1684. |
XIONG Zuhong, FAN Genyu, LU Min, et al. Treatment technologies of municipal solid waste incinerator fly ash: a review[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1678-1684. | |
7 | 苏蓉. 生活垃圾焚烧飞灰的处理[J]. 广州化工, 2016, 44(24): 104-106. |
SU Rong. Fly ash processing in living garbage incineration[J]. Guangzhou Chemical Industry, 2016, 44(24): 104-106. | |
8 | LONG Ling, JIANG Xuguang, Guojun LYU, et al. Characteristics of fly ash from waste-to-energy plants adopting grate-type or circulating fluidized bed incinerators: a comparative study[J/OL]. Energy Sources Part A: Recovery Utilization and Environmental Effects. DOI: 10.1080/15567036.2020.1796851. |
9 | MA Xiaojun, JIANG Xuguang, JIN Yuqi, et al. Hydrothermal stabilization of fly ash from a fluidized bed incinerator co-firing refuse and coal[J]. Fresenius Environmental Bulletin, 2012, 21(3): 586-592. |
10 | LIU Jianwen, LUO Wenzhi, CAO Hailin, et al. Understanding the immobilization mechanisms of hazardous heavy metal ions in the cage of sodalite at molecular level: a DFT study[J]. Microporous and Mesoporous Materials, 2020, 306: 110409. |
11 | QIU Qili, CHEN Qian, JIANG Xuguang, et al. Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment[J]. Chemosphere, 2019, 220: 1118-1125. |
12 | 邱琪丽. 垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究[D]. 杭州: 浙江大学, 2019. |
QIU Qili. Study on microwave-assisted hydrothermal disposal and product adsorption property of MSWI fly ash[D]. Hangzhou: Zhejiang University, 2019. | |
13 | BAYUSENO A P, SCHMAHL W W, MUELLEJANS T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 250-259. |
14 | United States Environmental Protection Agency. Toxicity characteristic leaching procedure: SW-846 Test Method 1311[S]. 1992. |
15 | Federal Government of the United States. Toxicity characteristics of hazardous waste: 40 CFR §261.24[S]. 1992. |
16 | JIN Jian, LI Xiaodong, CHI Yong, et al. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology[J]. Waste Management & Research, 2010, 28(12): 1133-1142. |
17 | 中华人民共和国环境保护部. 危险废物鉴别标准浸出毒性鉴别: [S]. 北京: 中国环境科学出版社, 2007. |
Ministry of Ecology Environment of the People’s Republic of China. Identification standards for hazardous wastes: [S]. Beijing: China Environment Science Press, 2007. | |
18 | JIN Jian, LI Xiaodong, CHI Yong, et al. Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal[J]. Water, Air, & Soil Pollution, 2010, 209(1/2/3/4): 391-400. |
19 | 中华人民共和国环境保护部. 生活垃圾填埋场污染控制标准: [S]. 北京: 中国环境科学出版社, 2008. |
Ministry of Ecology Environment of the People’s Republic of China. Standard for pollution control on landfill site of municipal solid waste: [S]. Beijing: China Environment Science Press, 2008. | |
20 | 中华人民共和国环境保护部. 污水综合排放标准: [S]. 北京: 中国环境科学出版社, 1996. |
Ministry of Ecology Environment of the People’s Republic of China. Integrated wastewater discharge standard: [S]. Beijing: China Environment Science Press, 1996. | |
21 | JIN Yuqi, MA Xiaojun, JIANG Xuguang, et al. Effects of hydrothermal treatment on the major heavy metals in fly ash from municipal solid waste incineration[J]. Energy & Fuels, 2013, 27(1): 394-400. |
22 | 马晓军. 水热法处理生活垃圾焚烧飞灰中重金属和二英的研究[D]. 杭州: 浙江大学, 2013. |
MA Xiaojun. Study on hydrothermal treatment of heavy metals and PCDD/Fs in MSWI fly ash[D]. Hangzhou: Zhejiang University, 2013. | |
23 | CHEN Zhan, YU Guangwei, WANG Yin, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process[J]. Waste Management, 2020, 109: 28-37. |
24 | 阮煜, 宗达, 陈志良, 等. 水热法协同处置不同垃圾焚烧炉飞灰及其机理[J]. 中国环境科学, 2018, 38(7): 2602-2608. |
RUAN Yu, ZONG Da, CHEN Zhiliang, et al. Co-hydrothermal processing for stabilize of different waste incinerator fly ash and its mechanism[J]. China Environmental Science, 2018, 38(7): 2602-2608. | |
25 | 金剑. 水热法垃圾焚烧飞灰重金属稳定化处理及同步去除废水中重金属[D]. 杭州: 浙江大学, 2010. |
JIN Jian. A novel hydrothermal process to stabilize heavy metals from both fly ash and waste water[D]. Hangzhou: Zhejiang University, 2010. | |
26 | CAPRAI V, SCHOLLBACH K, BROUWERS H J H. Influence of hydrothermal treatment on the mechanical and environmental performances of mortars including MSWI bottom ash[J]. Waste Management, 2018, 78: 639-648. |
27 | 张超. 碱性水热法稳定生活垃圾焚烧飞灰中重金属的研究[D]. 重庆: 重庆大学, 2017. |
ZHANG Chao. Study on alkaline hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration[D]. Chongqing: Chongqing University, 2017. | |
28 | ROŻEK P, KRÓL M, MOZGAWA W. Solidification/stabilization of municipal solid waste incineration bottom ash via autoclave treatment: Structural and mechanical properties[J]. Construction and Building Materials, 2019, 202: 603-613. |
29 | BISWAL B K, CHEN Zhitao, YANG Enhua. Hydrothermal process reduced Pseudomonas aeruginosa PAO1-driven bioleaching of heavy metals in a novel aerated concrete synthesized using municipal solid waste incineration bottom ash[J]. Chemical Engineering Journal, 2019, 360: 1082-1091. |
30 | SHAN Chengchong, JING Zhenzi, PAN Lili, et al. Hydrothermal solidification of municipal solid waste incineration fly ash[J]. Research on Chemical Intermediates, 2011, 37(2/3/4/5): 551-565. |
31 | 王磊. 水热法外加硅铝源稳定医疗废物焚烧飞灰中重金属的研究[D]. 杭州: 浙江大学, 2012. |
WANG Lei. Study on Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from medical waste incineration[D]. Hangzhou: Zhejiang University, 2012. | |
32 | SHI Dezhi, HU Chunyan, ZHANG Jinlu, et al. Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from MSW incineration[J]. Fuel Processing Technology, 2017, 165: 44-53. |
33 | TIAN Xiang, RAO Feng, MORALES-ESTRELLA R, et al. Effects of aluminum dosage on gel formation and heavy metal immobilization in alkali-activated municipal solid waste incineration fly ash[J]. Energy & Fuels, 2020, 34(4): 4727-4733. |
34 | WEI Yufeng, WANG Jin, WANG Junxia, et al. Hydrothermal processing, characterization and leaching toxicity of Cr-added “fly ash-metakaolin” based geopolymer[J]. Construction and Building Materials, 2020, 251: 118931. |
35 | SHI Dezhi, ZHANG Chao, ZHANG Jinlu, et al. Seed-assisted hydrothermal treatment with composite silicon-aluminum additive for solidification of heavy metals in municipal solid waste incineration fly ash[J]. Energy & Fuels, 2016, 30(12): 10661-10670. |
36 | 胡雨燕, 陈德珍, Christensen T H. 水热条件下绿矾稳定垃圾焚烧飞灰的研究[J]. 环境污染与防治, 2007, 29(1): 4-8. |
HU Yuyan, CHEN Dezhen, CHRISTENSEN T H. Chemical stabilization of incineration fly ash with FeSO4 under hydrothermal conditions[J]. Environmental Pollution & Control, 2007, 29(1): 4-8. | |
37 | 胡雨燕, 陈德珍. 水热条件下磷酸盐稳定垃圾焚烧飞灰的研究[J]. 建筑材料学报, 2008, 11(1): 121-126. |
HU Yuyan, CHEN Dezhen. Study of incineration fly ash stabilization with phosphate under hydrothermal condition[J]. Journal of Building Materials, 2008, 11(1): 121-126. | |
38 | HU Yuyan, ZHANG Pengfei, LI Jianping, et al. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process[J]. Journal of Hazardous Materials, 2015, 299: 149-157. |
39 | CHEN Qian, LONG Ling, LIU Xiaobo, et al. Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment[J]. Journal of Material Cycles and Waste Management, 2020, 22(4): 1196-1207. |
40 | CHEN Qian, Guojun LYU, JIANG Xuguang, et al. Stabilization of heavy metals in municipal solid waste circulating fluidized bed incineration fly ash by fusion-hydrothermal method[J]. Waste Disposal & Sustainable Energy, 2019, 1(4): 251-259. |
41 | QIU Qili, JIANG Xuguang, Guojun LYU, et al. Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process[J]. Journal of Material Cycles and Waste Management, 2019, 21: 469-477 |
42 | QIU Qili, JIANG Xuguang, Shengyong LYU, et al. Effects of microwave-assisted hydrothermal treatment on the major heavy metals of municipal solid waste incineration fly ash in a circulating fluidized bed[J]. Energy & Fuels, 2016, 30(7): 5945-5952. |
43 | QIU Qili, JIANG Xuguang, Guojun LYU, et al. Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives[J]. Energy & Fuels, 2016, 30(9): 7588-7595. |
44 | QIU Qili, JIANG Xuguang, CHEN Zhiliang, et al. Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash[J]. Energy & Fuels, 2017, 31(5): 5222-5232. |
45 | QIU Qili, JIANG Xuguang, Guojun LYU, et al. Evolution of heavy metal speciation in MSWI fly ash after microwave-assisted hydrothermal treatment[J]. Chemistry Letters, 2018, 47(8): 960-963. |
[1] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[6] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[7] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[8] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[9] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[10] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[11] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[12] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[13] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[14] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[15] | XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |