Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4394-4407.DOI: 10.16085/j.issn.1000-6613.2025-0119
• Micro-mesoscale process and material modeling and simulation • Previous Articles
DAI Guilong1,2(
), WANG Xiaoyu1(
), HUANGFU Jiangfei1, GONG Lingzhu2
Received:2025-01-20
Revised:2025-03-17
Online:2025-09-08
Published:2025-08-25
Contact:
DAI Guilong
通讯作者:
戴贵龙
作者简介:戴贵龙(1983—),男,博士,副教授,研究方向为多孔介质流固耦合传热、辐射传热。E-mail:daiguilong611@126.com基金资助:CLC Number:
DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407.
戴贵龙, 王孝宇, 皇甫江飞, 龚凌诸. 孔隙尺度下Laguerre Voronoi开孔泡沫的对流传热特性[J]. 化工进展, 2025, 44(8): 4394-4407.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0119
| dc/mm | ds/dc | ϕ/% | asf/m-1 | dh/mm |
|---|---|---|---|---|
| 3 | 0.11 | 96.8 | 367.12 | 10.60 |
| 0.25 | 85.3 | 708.21 | 4.80 | |
| 0.30 | 80.1 | 786.51 | 4.10 | |
| 0.32 | 78.1 | 803.64 | 3.90 | |
| 0.35 | 74.7 | 839.51 | 3.60 | |
| 0.45 | 61.8 | 901.96 | 2.70 | |
| 4 | 0.10 | 96.9 | 301.85 | 12.84 |
| 0.25 | 83.5 | 598.05 | 5.59 | |
| 0.31 | 76.2 | 673.91 | 4.52 | |
| 0.34 | 71.9 | 709.12 | 4.05 | |
| 0.38 | 67.6 | 727.36 | 3.72 | |
| 0.45 | 56.6 | 761.86 | 2.97 | |
| 5 | 0.10 | 96.8 | 245.77 | 15.76 |
| 0.24 | 84.3 | 473.60 | 7.12 | |
| 0.30 | 77.5 | 526.40 | 5.89 | |
| 0.32 | 74.4 | 551.30 | 5.40 | |
| 0.36 | 69.9 | 567.52 | 4.93 | |
| 0.45 | 56.0 | 599.60 | 3.74 |
| dc/mm | ds/dc | ϕ/% | asf/m-1 | dh/mm |
|---|---|---|---|---|
| 3 | 0.11 | 96.8 | 367.12 | 10.60 |
| 0.25 | 85.3 | 708.21 | 4.80 | |
| 0.30 | 80.1 | 786.51 | 4.10 | |
| 0.32 | 78.1 | 803.64 | 3.90 | |
| 0.35 | 74.7 | 839.51 | 3.60 | |
| 0.45 | 61.8 | 901.96 | 2.70 | |
| 4 | 0.10 | 96.9 | 301.85 | 12.84 |
| 0.25 | 83.5 | 598.05 | 5.59 | |
| 0.31 | 76.2 | 673.91 | 4.52 | |
| 0.34 | 71.9 | 709.12 | 4.05 | |
| 0.38 | 67.6 | 727.36 | 3.72 | |
| 0.45 | 56.6 | 761.86 | 2.97 | |
| 5 | 0.10 | 96.8 | 245.77 | 15.76 |
| 0.24 | 84.3 | 473.60 | 7.12 | |
| 0.30 | 77.5 | 526.40 | 5.89 | |
| 0.32 | 74.4 | 551.30 | 5.40 | |
| 0.36 | 69.9 | 567.52 | 4.93 | |
| 0.45 | 56.0 | 599.60 | 3.74 |
| D/mm | L/mm | ϕ | ds/dc | dc/mm | ρs/kg·m-3 | cs/J·kg-1·K-1 | λs/W·m-1·K-1 |
|---|---|---|---|---|---|---|---|
| 25 | 40 | 0.629 | 0.41 | 4.0 | 2670 | 900 | 120 |
| D/mm | L/mm | ϕ | ds/dc | dc/mm | ρs/kg·m-3 | cs/J·kg-1·K-1 | λs/W·m-1·K-1 |
|---|---|---|---|---|---|---|---|
| 25 | 40 | 0.629 | 0.41 | 4.0 | 2670 | 900 | 120 |
| 尺度 | 结构参数 | 表达式 | 拟合评价 | |
|---|---|---|---|---|
| R2 | 平均绝对百分比误差(MAPE)/% | |||
| 孔隙(元胞) | 0.981 | 7.9 | ||
| 0.974 | 11.6 | |||
| 表观(骨架) | 0.987 | 14.3 | ||
| 0.988 | 17.7 | |||
| 尺度 | 结构参数 | 表达式 | 拟合评价 | |
|---|---|---|---|---|
| R2 | 平均绝对百分比误差(MAPE)/% | |||
| 孔隙(元胞) | 0.981 | 7.9 | ||
| 0.974 | 11.6 | |||
| 表观(骨架) | 0.987 | 14.3 | ||
| 0.988 | 17.7 | |||
| [1] | CAKET Ahmet Guray, WANG Chunyang, NUGROHO Marvel Alif, et al. Recent studies on 3D lattice metal frame technique for enhancement of heat transfer: Discovering trends and reasons[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112697. |
| [2] | THIELE Simon, Tobias FÜRSTENHAUPT, BANHAM Dustin, et al. Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers[J]. Journal of Power Sources, 2013, 228: 185-192. |
| [3] | KONG Jiayue, ZUO Hongyang, ZENG Kuo, et al. Parameter analysis and rapid design of porosity gradient distribution for open-cell metal foam in the latent thermal energy storage unit[J]. Journal of Energy Storage, 2024, 76: 109744. |
| [4] | REN Shuwei, LIU Yiyang, SUN Wei, et al. Broadband low-frequency sound absorbing metastructures composed of impedance matching coiled-up cavity and porous materials[J]. Applied Acoustics, 2022, 200: 109061. |
| [5] | DE ANDRADE Rafaela, CASAGRANDE PAIM Thaís, BERTACO Isadora, et al. Hierarchically porous bioceramics based on geopolymer-hydroxyapatite composite as a novel biomaterial: Structure, mechanical properties and biocompatibility evaluation[J]. Applied Materials Today, 2023, 33: 101875. |
| [6] | XIONG Jiawei, SUN Jinzhou, CHEN Ye, et al. Study on the flow and heat transfer characteristics inside high-porosity open-cell copper foams: Experimental and numerical explorations[J]. International Journal of Heat and Fluid Flow, 2024, 109: 109499. |
| [7] | DIETRICH Benjamin, SCHABEL Wilhelm, KIND Matthias, et al. Pressure drop measurements of ceramic sponges-Determining the hydraulic diameter[J]. Chemical Engineering Science, 2009, 64(16): 3633-3640. |
| [8] | WU Zhiyong, CALIOT Cyril, BAI Fengwu, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
| [9] | DIETRICH B. Heat transfer coefficients for solid ceramic sponges-Experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2013, 61: 627-637. |
| [10] | XIA Xinlin, CHEN Xue, SUN Chuang, et al. Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2017, 106: 83-90. |
| [11] | DENG Song, HE Kun, REN Side, et al. Effects of forced convection on pool boiling heat transfer of metal foams: Numerical analysis and experimental validation[J]. International Journal of Heat and Mass Transfer, 2024, 227: 125551. |
| [12] | GHOSH Indranil. Heat-transfer analysis of high porosity open-cell metal foam[J]. Journal of Heat Transfer, 2008, 130(3): 034501. |
| [13] | WU Zhiyong, CALIOT Cyril, FLAMANT Gilles, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537. |
| [14] | SUN Mingrui, LI Man, HU Chengzhi, et al. Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number[J]. Applied Thermal Engineering, 2021, 182: 116130. |
| [15] | SOLOVEV Sergei A, SOLOVEVA Olga V, AKHMETOVA Irina G, et al. Numerical simulation of heat and mass transfer in an open-cell foam catalyst on example of the acetylene hydrogenation reaction[J]. ChemEngineering, 2022, 6(1): 11. |
| [16] | PARK Sung-Ho, JEONG Ji Hwan. Analytical fin efficiency model for open-cell porous metal fins based on Kelvin cell assumption[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123283. |
| [17] | CHEN Xue, Jinxin LYU, SUN Chuang, et al. Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies[J]. Energy, 2023, 278: 128006. |
| [18] | DYBBS A, EDWARDS R V. A new look at porous media fluid mechanics-Darcy to turbulent[M]//Fundamentals of Transport Phenomena in Porous Media. Dordrecht: Springer, 1984: 199-256. |
| [19] | DIANI Andrea, BODLA Karthik K, ROSSETTO Luisa, et al. Numerical investigation of pressure drop and heat transfer through reconstructed metal foams and comparison against experiments[J]. International Journal of Heat and Mass Transfer, 2015, 88: 508-515. |
| [20] | BUFFEL B, DESPLENTERE F, BRACKE K, et al. Modelling open cell-foams based on the Weaire Phelan unit cell with a minimal surface energy approach[J]. International Journal of Solids and Structures, 2014, 51(19/20): 3461-3470. |
| [21] | CLARKE Daniel A, DOLAMORE Fabian, Conan J FEE, et al. Investigation of flow through triply periodic minimal surface-structured porous media using MRI and CFD[J]. Chemical Engineering Science, 2021, 231: 116264. |
| [22] | DU Shen, TONG Zixiang, ZHANG Honghu, et al. Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters[J]. Renewable Energy, 2019, 135: 711-718. |
| [23] | HE Yaling, DU Shen, SHEN Sheng. Advances in porous volumetric solar receivers and enhancement of volumetric absorption[J]. Energy Reviews, 2023, 2(3): 100035. |
| [24] | FAN Chao, XIA Xinlin, LI Yang, et al. Tomography based pore-level structural optimization for reducing pressure drop of porous volumetric solar receiver[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112117. |
| [25] | NIE Zhengwei, LIN Yuyi, TONG Qingbin. Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model[J]. International Journal of Heat and Mass Transfer, 2017, 113: 819-839. |
| [26] | SEPEHRI Emad, SIAVASHI Majid. Pore-scale direct numerical simulation of fluid dynamics, conduction and convection heat transfer in open-cell Voronoi porous foams[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106274. |
| [27] | PAKNAHAD Reza, SIAVASHI Majid, HOSSEINI Milad. Pore-scale fluid flow and conjugate heat transfer study in high porosity Voronoi metal foams using multi-relaxation-time regularized lattice Boltzmann (MRT-RLB) method[J]. International Communications in Heat and Mass Transfer, 2023, 141: 106607. |
| [28] | XU Qian, WU Yunbing, CHEN Ye, et al. Unlocking the thermal efficiency of irregular open-cell metal foams: A computational exploration of flow dynamics and heat transfer phenomena[J]. Energies, 2024, 17(6): 1305. |
| [29] | MULJADI Bagus P, BLUNT Martin J, RAEINI Ali Q, et al. The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[J]. Advances in Water Resources, 2016, 95: 329-340. |
| [30] | KHAIRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex, et al. Heat transfer in 3D Laguerre Voronoi open-cell foams under pulsating flow[J]. Energies, 2022, 15(22): 8660. |
| [31] | HAYRULLIN Aidar, HAIBULLINA Aigul, SINYAVIN Alex. Heat transport phenomena in Voronoi foam due to pulsating flow[J]. Transportation Research Procedia, 2022, 63: 1236-1243. |
| [32] | CHEN Li, HE An, ZHAO Jianlin, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Progress in Energy and Combustion Science, 2022, 88: 100968. |
| [33] | Járai-Szabó FERENC, Zoltán NÉDA. On the size distribution of Poisson Voronoi cells[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 385(2): 518-526. |
| [34] | ZHANG Pan, KARIMPOUR Morad, BALINT Daniel, et al. A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis[J]. Computational Materials Science, 2012, 64: 84-89. |
| [35] | YANG C, ZHAO Y J, KANG L M, et al. High-strength silicon brass manufactured by selective laser melting[J]. Materials Letters, 2018, 210: 169-172. |
| [36] | WU Zhiyong, XU Siqi, YANG Lixin, et al. Numerical investigation of single-blow transient testing technique[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105023. |
| [37] | YANG Jian, WANG Jing, BU Shanshan, et al. Experimental analysis of forced convective heat transfer in novel structured packed beds of particles[J]. Chemical Engineering Science, 2012, 71: 126-137. |
| [38] | YOUNIS L B, VISKANTA R. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam[J]. International Journal of Heat and Mass Transfer, 1993, 36(6): 1425-1434. |
| [39] | J-J HWANG, G-J HWANG, YEH R-H, et al. Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams[J]. Journal of Heat Transfer, 2002, 124(1): 120-129. |
| [40] | JIANG Peixue, XU Ruina, GONG Wei. Particle-to-fluid heat transfer coefficients in miniporous media[J]. Chemical Engineering Science, 2006, 61(22): 7213-7222. |
| [1] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [2] | LIU Jianhong, LIU Dong, SHANG Fumin, YANG Kai, ZHENG Chaofan, CAO Xin. Heat transfer performance analysis of pulsating heat pipe heat exchanger with asymmetric structure [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3727-3736. |
| [3] | CAO Shuang, LIU He, GUO Jiaju, HU Chunxia, YANG Wolong, WU Xuehong. R245fa flow boiling heat transfer characteristics in enhanced tube with gradient porous coating [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3794-3803. |
| [4] | YANG Xinliu, LIU Qiang, CAO Qian, CUI Yueming, FANG Chaohe. Effect of reservoir seepage on heat transfer performance of a single-well downhole coaxial geothermal heat exchanger [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3860-3868. |
| [5] | ZHANG Chunhua, WANG Guoqing, ZHANG Lijun, LU Bona, ZHOU Cong, LIU Junjie. Twisted-tape-based heat transfer enhancement technology: Advances and challenges in vortex structure regulation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3163-3174. |
| [6] | DAI Guilong, LIU Yishuo, MU Longkun, GONG Lingchu. Optimization on coupled heat transfer model performance of cavity-shaped porous solar receivers [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3258-3270. |
| [7] | ZHEN Xiaofei, YANG Tebo, DONG Ti, QI Yonghao, LIU Jia. Research progress on enhancing hydrate gas storage performance in porous media [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3413-3431. |
| [8] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [9] | MENG Fanzhi, SUN Bing, YANG Zhe. Impact and risk assessment of feedstock substitution on new process safety in chemical production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2955-2971. |
| [10] | SONG Yiqi, LI Xue, YE Mao, LIU Zhongmin. Particle-resolved lattice Boltzmann simulations for sedimentation of catalyst particles with endothermic reaction [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2984-2996. |
| [11] | WANG Lei, WANG Yan, GAN Yufeng, LUO Kai, FEI Hua, LUAN Yanding. Heat transfer characteristics of supercritical CO2 in different heated mini-channels under horizontal flow condition [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1945-1956. |
| [12] | WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007. |
| [13] | YUAN Mengli, SONG Yuncai, LI Wenying, FENG Jie. Heat and mass transfer law of photothermal-driven lignite fixed-bed gasification process [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2008-2019. |
| [14] | WANG Meijie, WEI Liuke, JIA Baoyin, LAN Xingying, GAO Jinsen, SHI Xiaogang. Research progress on heat transfer enhancement of LNG open rack vaporizer [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1206-1217. |
| [15] | SHE Yonglu, XU Qiang, LUO Xinyi, NIE Tengfei, GUO Liejin. Effect of reaction temperature on bubble dynamics and mass transfer characteristics on photoanode surface [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1243-1252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |