Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2834-2845.DOI: 10.16085/j.issn.1000-6613.2024-1834

• CO2 emission reduction and utilization • Previous Articles    

Synthetic biology enables efficient carbon conservation and fixation in yeasts

SUN Tao(), WANG Xin, SUN Meili, WANG Kaifeng, JI Xiaojun()   

  1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2024-11-10 Revised:2025-02-04 Online:2025-05-20 Published:2025-05-25
  • Contact: JI Xiaojun

合成生物学优化酵母代谢过程中的碳保存和碳固定

孙涛(), 汪鑫, 孙美莉, 王凯峰, 纪晓俊()   

  1. 南京工业大学生物与制药工程学院,材料化学工程全国重点实验室,江苏 南京 211816
  • 通讯作者: 纪晓俊
  • 作者简介:孙涛(1996—),男,博士研究生,研究方向为微生物代谢工程及合成生物技术。E-mail:taosun@njtech.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(22178173)

Abstract:

With the continuous exploitation and utilization of fossil resources, the climate change resulting from the high emissions of CO2 has garnered significant attention, necessitating the urgent search for viable solutions. Utilizing the metabolic capabilities of microorganisms and optimizing them through synthetic biology approaches offers an exceptional solution for the biomanufacturing of chemicals. Yeasts, as major chassis microorganisms used for synthetic biology, have been successfully applied in the biomanufacturing of various products. Modifying the natural carbon metabolic pathways in yeasts to achieve greater carbon conservation and constructing artificial pathways to convert inorganic carbon into organic carbon for carbon fixation represent effective strategies to further reduce the carbon emissions. This review summarizes the recent research progress in constructing carbon conservation and carbon fixation systems in yeasts using synthetic biology approaches, with a particular emphasis on the advancements achieved in yeasts such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Pichia pastoris. It encompasses strategies to minimize carbon loss by eliminating unnecessary decarboxylation reactions and to augment carbon conservation via the enhancement of natural carboxylation reactions, as well as the establishment of carbon fixation systems that recycle carbon dioxide and harness its metabolic utilization. Building on these achievements, the future prospects for biomanufacturing through the development of low-carbon yeast cell factories are outlined.

Key words: yeasts, carbon conservation, carbon fixation, biomanufacturing, synthetic biology

摘要:

随着化石资源的不断开发和利用,由此带来的CO2高排放引发的气候变化备受人们关注,亟须寻找可持续性的解决方案。借助于微生物的代谢功能,利用合成生物学的手段对其进行优化改造,实现化学品的生物制造是一种优异的解决方案。酵母作为合成生物学研究中一类重要的底盘微生物,已经被成功应用于多种产品的生物制造。对酵母的天然碳代谢途径进行改造以实现更大程度的碳保存,并通过构建人工途径将无机碳转化为有机碳从而实现碳固定是进一步减少碳排放的有效途径。本文综述了近年来利用合成生物学手段在酵母中构建碳保存和碳固定系统的研究进展,重点介绍了以酿酒酵母、解脂耶氏酵母和毕赤酵母为代表的酵母类微生物的研究概况,包括避免非必要脱羧反应减少碳损耗和强化天然羧化反应促进碳保存,以及构建基于二氧化碳回用和代谢利用的碳固定系统,在此基础上展望了通过构建低碳酵母细胞工厂进行生物制造的未来发展方向。

关键词: 酵母, 碳保存, 碳固定, 生物制造, 合成生物学

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd