Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2463-2474.DOI: 10.16085/j.issn.1000-6613.2024-1830
• Synthetic biomanufacturing • Previous Articles Next Articles
SHENG Huakang(
), ZHANG Bo, SHEN Xiaolin, SUN Xinxiao, WANG Jia(
), YUAN Qipeng(
)
Received:2024-11-10
Revised:2025-02-16
Online:2025-05-20
Published:2025-05-25
Contact:
WANG Jia, YUAN Qipeng
盛华康(
), 张博, 申晓林, 孙新晓, 王佳(
), 袁其朋(
)
通讯作者:
王佳,袁其朋
作者简介:盛华康(1996—),男,博士研究生,研究方向为合成生物学及代谢工程。E-mail:2020400255@buct.edu.cn。
基金资助:CLC Number:
SHENG Huakang, ZHANG Bo, SHEN Xiaolin, SUN Xinxiao, WANG Jia, YUAN Qipeng. Microbial synthesis of resveratrol and its derivatives[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2463-2474.
盛华康, 张博, 申晓林, 孙新晓, 王佳, 袁其朋. 微生物合成白藜芦醇及其衍生物[J]. 化工进展, 2025, 44(5): 2463-2474.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1830
| 产物 | 宿主 | 外源酶 | 宿主改造 | 前体 | 发酵方式 | 转化率 /mol·mol-1 | 生产水平 /mg·L-1 | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 白藜芦醇 | E. coli | At4CL, VvSTS | 对香豆酸 | 全细胞催化 | 0.683 | 2340 | [ | |
| E. coli | At4CL, VvSTS | △fumC, Pgk↑, GapA↑, AceF↑, AceF↑, LpdA↑ | 对香豆酸 | 全细胞催化 | 0.467 | 1600 | [ | |
| E. coli | TcTAL, Pc4CL, VvSTS, RtMatB, RtMatC | FabF↓, FabI↓, FabB↓, FabD↓, AroGfbr↑, TyrA fbr↑ | 葡萄糖 | 摇瓶发酵 | 0.048 | 304.5 | [ | |
| S. cerevisiae | HaTAL, At4CL, VvSTS | ARO4K229L↑, ARO7G141S↑, ACC1S659A/S1157A ↑ | 葡萄糖/ 乙醇 | 1L发酵罐流加发酵 | 0.011/ 0.004 | 415.65/ 531.41 | [ | |
| S. cerevisiae | AtPAL2, AtC4H, AtATR2, At4CL2, VvVST1, EcAroL, SeACSL641P | CYB5↑, ARO4K229L↑, ARO7G141S↑, △ARO10, ACC1S659A/S1157A ↑ | 葡萄糖 | 1L发酵罐流加发酵 | 0.005 | 812 | [ | |
| S. cerevisiae | RtPAL/TAL, AtC4H, AtCPR1, VvSTS, Pc4CL, EcAroL, | △PHA2, ARO4K229L↑, ARO7G141S↑, ArRO2↑, ACC1S659A/S1157A ↑ | 葡萄糖 | 3L发酵罐流加发酵 | 0.013 | 4100 | [ | |
| Y. lipolytica | FjTAL, At4CL1, VvVST, VvPAL, AtC4H | 甘油 | 5L发酵罐分批发酵 | 0.002 | 430 | [ | ||
| Y. lipolytica | FjTAL, At4CL, VvSTS | ARO4K221L↑, ARO7G139S ↑ | 葡萄糖 | 1L发酵罐流加发酵 | 0.042 | 12400 | [ | |
| Y. lipolytica | FjTAL, Pc4CL1, VvSTS, AtPAL, AtC4H, AtATR2, CaFPK. BsPTA | ARO4K221L↑, ARO7G139S ↑, ARO1↑, CYB5↑, ARO3K225L↑, △DGA1 | 葡萄糖 | 5L发酵罐流加发酵 | 0.018 | 22500 | [ | |
| 白皮杉醇 | E. coli | PaHpaBC | 白藜芦醇 | 全细胞催化 | 0.767 | 5200 | [ | |
| E. coli | EcHpaBC | 白藜芦醇 | 全细胞催化 | 0.748 | 1200 | [ | ||
| E. coli | EcHpaBC G209F | 白藜芦醇 | 全细胞催化 | 0.806 | 2010 | [ | ||
| E. coli | Pc4CL, VvSTS, EcHpaBC, StcMatB, StcMatC | 对香豆酸 | 摇瓶发酵 | 0.508 | 124 | [ | ||
| 虎杖苷 | S. cerevisiae | PcR3GAT, AtPAL, AtC4H, At4CL, VvSTS, AtATR2 | CYB5↑, ARO4K229L↑, ARO7G141S↑ | 葡萄糖 | 5L发酵罐分批发酵 | 0.010 | 545 | [ |
| Y. lipolytica | RgTAL, At4CL, VvSTS, PcR3GAT, EcAroGfbr, EcTyrAfbr, BbPK, BsPTA | △MHY1, △ACE, △DGA1, △BGL2, △EXG1 | 葡萄糖 | 摇瓶发酵 | 0.003 | 6880 | [ | |
| 紫檀芪 | C. glutamicum | Pc4CL, AhSTS, VvOMT | 对香豆酸 | 摇瓶发酵 | 0.032 | 42 | [ | |
| E. coli | RgTALS9N/A11T/E518V, At4CL, VvSTS, VvROMT | △RppH, △YgdT, △MutH, △YgdQ, △YgdR, △TAS, △LplT, △Aas, △OmrB, △PtsP, △GalR | 葡萄糖 | 摇瓶发酵 | 0.004 | 80.04 | [ | |
| 2-C-异戊二烯基白藜芦醇 | E. coli | PfIacE, At4CL, VvSTS, SaHMGS, SaHMGR, SacMK, SacPMK, SacPMD, EcIDI | GltA↓, AcpS↓, AcpT↓ | 对香豆酸 | 摇瓶发酵 | 0.577 | 68.4 | [ |
| 产物 | 宿主 | 外源酶 | 宿主改造 | 前体 | 发酵方式 | 转化率 /mol·mol-1 | 生产水平 /mg·L-1 | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 白藜芦醇 | E. coli | At4CL, VvSTS | 对香豆酸 | 全细胞催化 | 0.683 | 2340 | [ | |
| E. coli | At4CL, VvSTS | △fumC, Pgk↑, GapA↑, AceF↑, AceF↑, LpdA↑ | 对香豆酸 | 全细胞催化 | 0.467 | 1600 | [ | |
| E. coli | TcTAL, Pc4CL, VvSTS, RtMatB, RtMatC | FabF↓, FabI↓, FabB↓, FabD↓, AroGfbr↑, TyrA fbr↑ | 葡萄糖 | 摇瓶发酵 | 0.048 | 304.5 | [ | |
| S. cerevisiae | HaTAL, At4CL, VvSTS | ARO4K229L↑, ARO7G141S↑, ACC1S659A/S1157A ↑ | 葡萄糖/ 乙醇 | 1L发酵罐流加发酵 | 0.011/ 0.004 | 415.65/ 531.41 | [ | |
| S. cerevisiae | AtPAL2, AtC4H, AtATR2, At4CL2, VvVST1, EcAroL, SeACSL641P | CYB5↑, ARO4K229L↑, ARO7G141S↑, △ARO10, ACC1S659A/S1157A ↑ | 葡萄糖 | 1L发酵罐流加发酵 | 0.005 | 812 | [ | |
| S. cerevisiae | RtPAL/TAL, AtC4H, AtCPR1, VvSTS, Pc4CL, EcAroL, | △PHA2, ARO4K229L↑, ARO7G141S↑, ArRO2↑, ACC1S659A/S1157A ↑ | 葡萄糖 | 3L发酵罐流加发酵 | 0.013 | 4100 | [ | |
| Y. lipolytica | FjTAL, At4CL1, VvVST, VvPAL, AtC4H | 甘油 | 5L发酵罐分批发酵 | 0.002 | 430 | [ | ||
| Y. lipolytica | FjTAL, At4CL, VvSTS | ARO4K221L↑, ARO7G139S ↑ | 葡萄糖 | 1L发酵罐流加发酵 | 0.042 | 12400 | [ | |
| Y. lipolytica | FjTAL, Pc4CL1, VvSTS, AtPAL, AtC4H, AtATR2, CaFPK. BsPTA | ARO4K221L↑, ARO7G139S ↑, ARO1↑, CYB5↑, ARO3K225L↑, △DGA1 | 葡萄糖 | 5L发酵罐流加发酵 | 0.018 | 22500 | [ | |
| 白皮杉醇 | E. coli | PaHpaBC | 白藜芦醇 | 全细胞催化 | 0.767 | 5200 | [ | |
| E. coli | EcHpaBC | 白藜芦醇 | 全细胞催化 | 0.748 | 1200 | [ | ||
| E. coli | EcHpaBC G209F | 白藜芦醇 | 全细胞催化 | 0.806 | 2010 | [ | ||
| E. coli | Pc4CL, VvSTS, EcHpaBC, StcMatB, StcMatC | 对香豆酸 | 摇瓶发酵 | 0.508 | 124 | [ | ||
| 虎杖苷 | S. cerevisiae | PcR3GAT, AtPAL, AtC4H, At4CL, VvSTS, AtATR2 | CYB5↑, ARO4K229L↑, ARO7G141S↑ | 葡萄糖 | 5L发酵罐分批发酵 | 0.010 | 545 | [ |
| Y. lipolytica | RgTAL, At4CL, VvSTS, PcR3GAT, EcAroGfbr, EcTyrAfbr, BbPK, BsPTA | △MHY1, △ACE, △DGA1, △BGL2, △EXG1 | 葡萄糖 | 摇瓶发酵 | 0.003 | 6880 | [ | |
| 紫檀芪 | C. glutamicum | Pc4CL, AhSTS, VvOMT | 对香豆酸 | 摇瓶发酵 | 0.032 | 42 | [ | |
| E. coli | RgTALS9N/A11T/E518V, At4CL, VvSTS, VvROMT | △RppH, △YgdT, △MutH, △YgdQ, △YgdR, △TAS, △LplT, △Aas, △OmrB, △PtsP, △GalR | 葡萄糖 | 摇瓶发酵 | 0.004 | 80.04 | [ | |
| 2-C-异戊二烯基白藜芦醇 | E. coli | PfIacE, At4CL, VvSTS, SaHMGS, SaHMGR, SacMK, SacPMK, SacPMD, EcIDI | GltA↓, AcpS↓, AcpT↓ | 对香豆酸 | 摇瓶发酵 | 0.577 | 68.4 | [ |
| 1 | TIAN Bingren, LIU Jiayue. Resveratrol: A review of plant sources, synthesis, stability, modification and food application[J]. Journal of the Science of Food and Agriculture, 2020, 100(4): 1392-1404. |
| 2 | CHU Mingyu, ALMAGRO Lorena, CHEN Baihong, et al. Recent trends and comprehensive appraisal for the biotechnological production of trans-resveratrol and its derivatives[J]. Phytochemistry Reviews, 2018, 17(3): 491-508. |
| 3 | BENSA Maja, VOVK Irena, GLAVNIK Vesna. Resveratrol food supplement products and the challenges of accurate label information to ensure food safety for consumers[J]. Nutrients, 2023, 15(2): 474. |
| 4 | COSTA Carlos E, Aloia ROMANÍ, DOMINGUES Lucília. Overview of resveratrol properties, applications, and advances in microbial precision fermentation[J]. Critical Reviews in Biotechnology, 2024: 1-17. |
| 5 | 树林一, 赵航, 黄雯莉, 等. 白藜芦醇及衍生物的研究进展[J]. 河北医药, 2019, 41(13): 2043-2048. |
| SHU Linyi, ZHAO Hang, HUANG Wenli, et al. Research progress on resveratrol and resveratrol derivants[J]. Hebei Medical Journal, 2019, 41(13): 2043-2048. | |
| 6 | 朱小桂, 李立, 苏慧珊, 等. 白藜芦醇衍生物的结构与活性综述[J]. 科学咨询(科技·管理), 2021(1): 50-53. |
| ZHU Xiaogui, LI Li, SU Huishan, et al. Review on the structure-activity relationship of resveratrol derivatives[J]. Technology & Management, 2021(1): 50-53. | |
| 7 | LIN Weisheng, LELAND Jane Valorie, Chi-Tang HO, et al. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene[J]. Journal of Agricultural and Food Chemistry, 2020, 68(46): 12788-12799. |
| 8 | KARAMI Ahmad, FAKHRI Sajad, KOOSHKI Leila, et al. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits[J]. Molecules, 2022, 27(19): 6474. |
| 9 | KISELEV Konstantin V. Perspectives for production and application of resveratrol[J]. Applied Microbiology and Biotechnology, 2011, 90(2): 417-425. |
| 10 | 王崑仑, 赵修华, 祖元刚,等. 白藜芦醇在几种植物中各部位的分布[J]. 植物研究, 2015, 35(4): 638-640. |
| WANG Kunlun, ZHAO Xiuhua, ZU Yuangang, et al. Distribution of resveratrol in different parts of several plants[J]. Bulletin of Botanical Research, 2015, 35(4): 638-640. | |
| 11 | BRAGA A, FERREIRA P, OLIVEIRA J, et al. Heterologous production of resveratrol in bacterial hosts: Current status and perspectives[J]. World Journal of Microbiology and Biotechnology, 2018, 34(8): 122. |
| 12 | FAN Enguo, ZHANG Kai, ZHU Mingzhao, et al. Obtaining resveratrol: From chemical synthesis to biotechnological production[J]. Mini-Reviews in Organic Chemistry, 2010, 7(4): 272-281. |
| 13 | YAN Wenlong, CAO Zhibei, DING Mingzhu, et al. Design and construction of microbial cell factories based on systems biology[J]. Synthetic and Systems Biotechnology, 2023, 8(1): 176-185. |
| 14 | LIU Xiaonan, DING Wentao, JIANG Huifeng. Engineering microbial cell factories for the production of plant natural products: From design principles to industrial-scale production[J]. Microbial Cell Factories, 2017, 16(1): 125. |
| 15 | LIU Mengsu, WANG Chao, REN Xuefeng, et al. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica [J]. Bioresource Technology, 2022, 365: 128178. |
| 16 | Chin Giaw LIM, FOWLER Zachary L, HUELLER Thomas, et al. High-yield resveratrol production in engineered Escherichia coli [J]. Applied and Environmental Microbiology, 2011, 77(10): 3451-3460. |
| 17 | BHAN Namita, XU Peng, KHALIDI Omar, et al. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework[J]. Chemical Engineering Science, 2013, 103: 109-114. |
| 18 | WU Junjun, ZHOU Peng, ZHANG Xia, et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(7): 1083-1095. |
| 19 | LI Mingji, KILDEGAARD Kanchana R, CHEN Yun, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 32: 1-11. |
| 20 | LI Mingji, SCHNEIDER Konstantin, KRISTENSEN Mette, et al. Engineering yeast for high-level production of stilbenoid antioxidants[J]. Scientific Reports, 2016, 6: 36827. |
| 21 | MENG Lijun, DIAO Mengxue, WANG Qingyan, et al. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2023, 22(1): 46. |
| 22 | HE Qin, Patrycja SZCZEPAŃSKA, YUZBASHEV Tigran, et al. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica [J]. Metabolic Engineering Communications, 2020, 11: e00146. |
| 23 | Javier SÁEZ-SÁEZ, WANG Guokun, MARELLA Eko Roy, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production[J]. Metabolic Engineering, 2020, 62: 51-61. |
| 24 | FURUYA Toshiki, KINO Kuniki. Regioselective synthesis of piceatannol from resveratrol: Catalysis by two-component flavin-dependent monooxygenase HpaBC in whole cells[J]. Tetrahedron Letters, 2014, 55(17): 2853-2855. |
| 25 | LIN Yuheng, YAN Yajun. Biotechnological production of plant-specific hydroxylated phenylpropanoids[J]. Biotechnology and Bioengineering, 2014, 111(9): 1895-1899. |
| 26 | ZHANG Qianchao, ZHANG Zhiwei, CHEN Yong, et al. Engineering of 4-hydroxyphenylacetate-3-hydroxylase from Escherichia coli for efficient biosynthesis of piceatannol[J]. Process Biochemistry, 2023, 135: 33-39. |
| 27 | SHRESTHA Anil, PANDEY Ramesh Prasad, POKHREL Anaya Raj, et al. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli [J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9691-9706. |
| 28 | LIU Tian, LIU Yuqian, LI Lan, et al. De novo biosynthesis of polydatin in Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2021, 69(21): 5917-5925. |
| 29 | SHANG Yanzhe, ZHANG Ping, WEI Wenping, et al. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica [J]. Bioresource Technology, 2023, 381: 129129. |
| 30 | KALLSCHEUER Nicolai, VOGT Michael, BOTT Michael, et al. Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin[J]. Journal of Biotechnology, 2017, 258: 190-196. |
| 31 | YAN Zhibo, LIANG Jinglong, NIU Fuxing, et al. Enhanced production of pterostilbene in Escherichia coli through directed evolution and host strain engineering[J]. Frontiers in Microbiology, 2021, 12: 710405. |
| 32 | WANG Haijiao, ZHOU Ting, LIU Hui, et al. Heterologous biosynthesis of prenylated resveratrol through multiplex metabolic engineering in Escherichia coli [J]. Green Chemistry, 2024, 26(8): 4792-4802. |
| 33 | CUI Di, DENG Aihua, BAI Hua, et al. Molecular basis for feedback inhibition of tyrosine-regulated 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli [J]. Journal of Structural Biology, 2019, 206(3): 322-334. |
| 34 | RODRIGUEZ Alberto, MARTÍNEZ Juan A, FLORES Noemí, et al. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds[J]. Microbial Cell Factories, 2014, 13(1): 126. |
| 35 | PITTARD James, CAMAKARIS Helen, YANG Ji. The TyrR regulon[J]. Molecular Microbiology, 2005, 55(1): 16-26. |
| 36 | CHÁVEZ BÉJAR María I, BALDERAS-HERNANDEZ Victor E, Aída GUTIÉRREZ-ALEJANDRE, et al. Metabolic engineering of Escherichia coli to optimize melanin synthesis from glucose[J]. Microbial Cell Factories, 2013, 12: 108. |
| 37 | YUAN Shuofu, YI Xiunan, JOHNSTON Trevor G, et al. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture[J]. Microbial Cell Factories, 2020, 19(1): 143. |
| 38 | LIU Xiaozhen, NIU Hao, LI Qiang, et al. Metabolic engineering for the production of l-phenylalanine in Escherichia coli [J]. 3 Biotech, 2019, 9(3): 85. |
| 39 | GOSSET Guillermo. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:Sugar phosphotransferase system[J]. Microbial Cell Factories, 2005, 4(1): 14. |
| 40 | SIEDLER Solvej, BRINGER Stephanie, BLANK Lars M, et al. Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport[J]. Applied Microbiology and Biotechnology, 2012, 93(4): 1459-1467. |
| 41 | LIU Yongfei, XU Yiran, DING Dongqin, et al. Genetic engineering of Escherichia coli to improve L-phenylalanine production[J]. BMC Biotechnology, 2018, 18(1): 5. |
| 42 | CHANDRAN Sunil S, YI Jian, DRATHS K M, et al. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid[J]. Biotechnology Progress, 2003, 19(3): 808-814. |
| 43 | TOYA Yoshihiro, ISHII Nobuyoshi, NAKAHIGASHI Kenji, et al. 13C-metabolic flux analysis for batch culture of Escherichia coli and its Pyk and Pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites[J]. Biotechnology Progress, 2010, 26(4): 975-992. |
| 44 | EMMERLING Marcel, DAUNER Michael, PONTI Aaron, et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli [J]. Journal of Bacteriology, 2002, 184(1): 152-164. |
| 45 | GONZALEZ Jacqueline E, LONG Christopher P, ANTONIEWICZ Maciek R. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis[J]. Metabolic Engineering, 2017, 39: 9-18. |
| 46 | 孙薇, 丁冬芹, 柏丹阳, 等. 芳香族氨基酸及其衍生物的细胞工厂构建策略[J]. 合成生物学, 2021, 2(6): 982-999. |
| SUN Wei, DING Dongqin, BAI Danyang, et al. Strategies of cell factory construction for the production of aromatic amino acids and their derivatives[J]. Synthetic Biology Journal, 2021, 2(6): 982-999. | |
| 47 | AN Ning, XIE Chong, ZHOU Shubin, et al. Establishing a growth-coupled mechanism for high-yield production of β-arbutin from glycerol in Escherichia coli [J]. Bioresource Technology, 2023, 369: 128491. |
| 48 | YAKANDAWALA N, ROMEO T, FRIESEN A D, et al. Metabolic engineering of Escherichia coli to enhance phenylalanine production[J]. Applied Microbiology and Biotechnology, 2008, 78(2): 283-291. |
| 49 | SANTOS Christine Nicole S, KOFFAS Mattheos, STEPHANOPOULOS Gregory. Optimization of a heterologous pathway for the production of flavonoids from glucose[J]. Metabolic Engineering, 2011, 13(4): 392-400. |
| 50 | ZHOU Shenghu, LIU Peiran, CHEN Jian, et al. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis [J]. Applied Microbiology and Biotechnology, 2016, 100(24): 10443-10452. |
| 51 | KANEKO Masafumi, HWANG Eui Il, OHNISHI Yasuo, et al. Heterologous production of flavanones in Escherichia coli: Potential for combinatorial biosynthesis of flavonoids in bacteria[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(8): 456-461. |
| 52 | QIU Chong, WANG Xiaoge, ZUO Jiaojiao, et al. Systems engineering Escherichia coli for efficient production p-coumaric acid from glucose[J]. Biotechnology and Bioengineering, 2024, 121(7): 2147-2162. |
| 53 | LIU Quanli, YU Tao, LI Xiaowei, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals[J]. Nature Communications, 2019, 10(1): 4976. |
| 54 | KYNDT J A, MEYER T E, CUSANOVICH M. A, et al. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein[J]. FEBS Letters, 2002, 512(1/2/3): 240-244. |
| 55 | GURUPRASAD R, DEEPASHREEH R, MANASA B, et al. Tyrosine ammonia lyase extracted from Clitoria ternatea Linn.—Its important role in metabolism of humans and reaction with different metal ions[J]. International Journal of Pharma and Bio Sciences, 2014, 5(1): B76-B82. |
| 56 | WU Junjun, ZHOU Lin, DUAN Xuguo, et al. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability[J]. Metabolic Engineering, 2021, 67: 403-416. |
| 57 | ZHA Wenjuan, RUBIN-PITEL Sheryl B, SHAO Zengyi, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J]. Metabolic Engineering, 2009, 11(3): 192-198. |
| 58 | ZHANG Qian, YU Shiqin, Yunbin LYU, et al. Systematically engineered fatty acid catabolite pathway for the production of (2S)-naringenin in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2021, 10(5): 1166-1175. |
| 59 | WU Junjun, ZHANG Xia, XIA Xiudong, et al. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli [J]. Metabolic Engineering, 2017, 41: 115-124. |
| 60 | SCHWANEMANN Tobias, OTTO Maike, WYNANDS Benedikt, et al. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis[J]. Metabolic Engineering, 2023, 77: 219-230. |
| 61 | ZHOU Shenghu, YUAN Shuofu, NAIR Priya H, et al. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli [J]. Metabolic Engineering, 2021, 67: 41-52. |
| 62 | PRICE Allen C, CHOI Keum-Hwa, HEATH Richard J, et al. Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin STRUCTURE AND MECHANISM[J]. Journal of Biological Chemistry, 2001, 276(9): 6551-6559. |
| 63 | YANG Yaping, LIN Yuheng, LI Lingyun, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering, 2015, 29: 217-226. |
| 64 | WU Junjun, DU Guocheng, ZHOU Jingwen, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy[J]. Metabolic Engineering, 2013, 16: 48-55. |
| 65 | WU Xia, LIU Jingyi, LIU Dan, et al. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum [J]. Microbial Cell Factories, 2022, 21(1): 86. |
| 66 | LIU Bo, ZHANG Yuwei, CUI Qianqian, et al. An alternative malonyl-CoA producing pathway in nature[J]. bioRxiv, 2022. |
| 67 | LI Jian, MU Xin, DONG Wenyue, et al. A non-carboxylative route for the efficient synthesis of central metabolite malonyl-CoA and its derived products[J]. Nature Catalysis, 2024, 7: 361-374. |
| 68 | BECKER John V W, ARMSTRONG Gareth O, VAN DER MERWE Marthinus J, et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol[J]. FEMS Yeast Research, 2003, 4(1): 79-85. |
| 69 | WU Junjun, LIU Peiran, FAN Yongming, et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine[J]. Journal of Biotechnology, 2013, 167(4): 404-411. |
| 70 | ZHANG Yansheng, LI Songzhe, LI Jia, et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells[J]. Journal of the American Chemical Society, 2006, 128(40): 13030-13031. |
| 71 | WANG Yechun, YI Hankuil, WANG Melissa, et al. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::Stilbene synthase[J]. Journal of the American Chemical Society, 2011, 133(51): 20684-20687. |
| 72 | WANG Yechun, YU Oliver. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells[J]. Journal of Biotechnology, 2012, 157(1): 258-260. |
| 73 | CONRADO Robert J, WU Gabriel C, BOOCK Jason T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency[J]. Nucleic Acids Research, 2012, 40(4): 1879-1889. |
| 74 | AL-JABER Hala I, SHAKYA Ashok K, AL-QUDAH Mahmoud A, et al. Piceatannol, a comprehensive review of health perspectives and pharmacological aspects[J]. Arabian Journal of Chemistry, 2024, 17(9): 105939. |
| 75 | POTTER G A, PATTERSON L H, WANOGHO E,et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1[J]. British Journal of Cancer, 2002, 86(5): 774-778. |
| 76 | PIVER Bertrand, Maude FER, VITRAC Xavier, et al. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes[J]. Biochemical Pharmacology, 2004, 68(4): 773-782. |
| 77 | KIM Dong-Hyun, Taeho AHN, JUNG Heung-Chae, et al. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3[J]. Drug Metabolism and Disposition, 2009, 37(5): 932-936. |
| 78 | LEE Nahum, KIM Eun Jung, KIM Byung-Gee. Regioselective hydroxylation of trans-resveratrol via inhibition of tyrosinase from Streptomyces avermitilis MA4680[J]. ACS Chemical Biology, 2012, 7(10): 1687-1692. |
| 79 | FURUYA Toshiki, Masahiko SAI, KINO Kuniki. Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition[J]. Journal of Bioscience and Bioengineering, 2018, 126(4): 478-481. |
| 80 | PANDEY Ramesh Prasad, PARAJULI Prakash, SHIN Ju Yong, et al. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives[J]. Applied and Environmental Microbiology, 2014, 80(23): 7235-7243. |
| 81 | CHOI Oksik, LEE Jae Kyoung, KANG Sun-Young, et al. Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives[J]. Journal of Microbiology and Biotechnology, 2014, 24(5): 614-618. |
| 82 | CHAN Eric Wei Chiang. 3'-hydroxypterostilbene and pinostilbene: Their chemistry, sources, anticancer and other pharmacological properties, pharmacokinetics, and patents[J]. Journal of Applied Pharmaceutical Science, 2023, 13(9): 1-8. |
| 83 | WANG Pei, SANG Shengmin. Metabolism and pharmacokinetics of resveratrol and pterostilbene[J]. BioFactors, 2018, 44(1): 16-25. |
| 84 | JEONG Yu Jeong, AN Chul Han, Su Gyeong WOO, et al. Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli [J]. Enzyme and Microbial Technology, 2014, 54: 8-14. |
| 85 | Kyung Taek HEO, KANG Sun-Young, HONG Young-Soo. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis[J]. Microbial Cell Factories, 2017, 16(1): 30. |
| 86 | HERRERA Daniela P, CHÁNIQUE Andrea M, Ascensión MARTÍNEZ-MÁRQUEZ, et al. Rational design of resveratrol O-methyltransferase for the production of pinostilbene[J]. International Journal of Molecular Sciences, 2021, 22(9): 4345. |
| 87 | KANG Sun-Young, LEE Jae Kyoung, CHOI Oksik, et al. Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli [J]. BMC Biotechnology, 2014, 14: 67. |
| 88 | RIMANDO Agnes M, PAN Zhiqiang, POLASHOCK James J, et al. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression[J]. Plant Biotechnology Journal, 2012, 10(3): 269-283. |
| 89 | CHONG Yoojin, LEE Hye Lim, SONG Jihyeon, et al. Biosynthesis of resveratrol derivatives and evaluation of their anti-inflammatory activity[J]. Applied Biological Chemistry, 2021, 64(1): 33. |
| 90 | 李宁, 杨媛媛, 曲彤, 等. 异戊烯基黄酮类化合物药理作用研究进展[J]. 中成药, 2024, 46(4): 1255-1262. |
| LI Ning, YANG Yuanyuan, QU Tong, et al. Research progress on pharmacological effects of isopentenyl flavonoids[J]. Chinese Traditional Patent Medicine, 2024, 46(4): 1255-1262. | |
| 91 | BO Shengtao, CHANG Sui Kiat, ZHOU Ting, et al. Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity[J]. Food Chemistry, 2022, 378: 132118. |
| 92 | ZHOU Ting, YANG Bao. Novel strategy to produce prenylated resveratrol by prenyltransferase iacE and evaluation of neuroprotective mechanisms[J]. Biochemical and Biophysical Research Communications, 2022, 609: 127-133. |
| 93 | VADALI Ravishankar V, BENNETT George N, Ka-Yiu SAN. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli [J]. Metabolic Engineering, 2004, 6(2): 133-139. |
| 94 | SHARMA Anshula, GUPTA Gaganjot, AHMAD Tawseef, et al. Enzyme engineering: Current trends and future perspectives[J]. Food Reviews International, 2021, 37(2): 121-154. |
| [1] | SUN Tao, WANG Xin, SUN Meili, WANG Kaifeng, JI Xiaojun. Synthetic biology enables efficient carbon conservation and fixation in yeasts [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2834-2845. |
| [2] | LI Yuzhen, HE Mingjing, WANG Haoming, MA Xiaoqing, LIU Licheng, LI Fuli. Current status of the third-generation carbon-one biorefinery using CO2 as raw material [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2811-2824. |
| [3] | FENG Jiao, LIU Mingming, LIU Yao, WANG Xin, CHEN Kequan. Research progress in the biosynthesis of aliphatic short-chain diamines and diols from renewable feedstocks [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2655-2666. |
| [4] | TANG Yongsheng, GU Ziyun, CHEN Xiulai. Regulation of microbial cell viability for succinic acid production [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2489-2504. |
| [5] | NI Xin, GAO Jiaoqi, ZHOU Yongjin. Progress on yeast cell factory for lignocellulose biotransformation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2475-2488. |
| [6] | YAO Lu, MA Zengxin, ZHANG Cong, YANG Song, XING Xinhui. Recent advances in strengthening Methylobacterium chassis for the utilization of methanol from industrial and plant sources [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2451-2462. |
| [7] | WANG Yuanyuan, ZHANG Chong, HAN Shuangyan, XING Xinhui. Research progress on bioproduction of recombinant proteins by Pichia pastoris utilizing methanol [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2441-2450. |
| [8] | WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440. |
| [9] | XU Kai, CUI Jinna, LIU Zhanying. Research progress in the production of cellulosic ethanol via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6873-6882. |
| [10] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
| [11] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
| [12] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
| [13] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
| [14] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
| [15] | WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |