Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2429-2440.DOI: 10.16085/j.issn.1000-6613.2024-2057
• Synthetic biomanufacturing • Previous Articles
WU Mengqin1,2,3(
), WANG Jiayao2,3,4, XU Youqiang1(
), WANG Yu2,3(
)
Received:2024-12-18
Revised:2025-01-25
Online:2025-05-20
Published:2025-05-25
Contact:
XU Youqiang, WANG Yu
吴孟勤1,2,3(
), 王佳瑶2,3,4, 徐友强1(
), 王钰2,3(
)
通讯作者:
徐友强,王钰
作者简介:吴孟勤(1998—),女,博士研究生,研究方向为微生物进化技术与单细胞蛋白合成。E-mail:znwmqin@163.com.cn。
基金资助:CLC Number:
WU Mengqin, WANG Jiayao, XU Youqiang, WANG Yu. Progress in cascade conversion of CO2 to single cell protein through chemical and biological catalysis[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2429-2440.
吴孟勤, 王佳瑶, 徐友强, 王钰. 化学-生物级联转化CO2合成单细胞蛋白研究进展[J]. 化工进展, 2025, 44(5): 2429-2440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2057
| 催化剂 | 温度 /K | 压力 /MPa | H2∶CO2 | 气体时空速度 /mL∙h-1∙g-1 | CO2转化率 /% | 甲醇选择性 /% | 时空产率 /gMeOH∙gcat-1∙h-1 | 催化剂稳定性/h | 反应 途径 | 参考文献 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Cu基催化剂 | |||||||||||
| CuZnAl | 533 | 1.5 | 3 | — | 2 | 约54 | 0.73 | — | 甲酸盐 | [ | |
| Cu-20%MgO/ZnO | 473 | 3 | H2∶CO2∶N2= 3∶1∶1 | 7200 | 8.7 | 99 | 0.202 | >120 | — | [ | |
| Cu-ZrO2 | 493 | 3 | H2∶CO2∶Ar= 72∶24∶4 | 15000 | 7.2 | 约77.8 | 2.617 | 约16 | CO加氢 | [ | |
| 30%CuO/49.65%ZnO/20.35%Al2O3 | 575 | 8.5 | 4 | 19000 | 13 | 50 | 0.22 | — | — | [ | |
| 60%CuO-30%ZnO10%Al2O3 | 575 | 8.5 | 4 | 19000 | 21 | 49.5 | 0.425 | — | — | ||
| 60%CuO-27%ZnO/3%La2O3/10%Al2O3 | 575 | 8.5 | 4 | 55000 | 10 | 65 | 0.79 | — | — | ||
| 贵金属基催化剂 | |||||||||||
| Pt(3)/MoO x (30)/TiO2 | 423 | — | 5 | — | — | 约85 | — | — | 甲酸盐 | [ | |
| PdZn/CeO2 | 473 | 2 | 3 | 3600 | 14.1 | 97.2 | 0.17 | >100 | 甲酸盐 | [ | |
| PdZn/ZnO/SiO2 | 533 | 5 | 3 | 60000 | 3.3 | 65.3 | 0.443 | — | — | [ | |
| 金属氧化物催化剂 | |||||||||||
| In2O3/ZrO2 | 573 | 5 | 4∶1 | 16000 | 5.2 | 99.8 | 0.295 | 1000 | — | [ | |
| hexagonalIn2O3 | 543 | 5 | 4∶1 | 20000 | 6.7 | 99.5 | 0.365 | 136 | 甲酸盐 | [ | |
| 固溶体催化剂 | |||||||||||
| ZnO-ZrO2 | 588-593 | 5 | (3∶1)~(4∶1) | 24000 | >10%(单程) | 86~91 | — | >500 | 甲酸盐 | [ | |
| 有序介孔结构ZnO-ZrO2 | 593 | 5.5 | H2∶CO2∶Ar= 72∶24∶4 | 24000 | 约10 | 约81 | 0.708 | 40 | — | [ | |
| 金属有机框架催化剂 | |||||||||||
| Cu@FAU | 513 | 3 | 3 | 12000 | 11.5 | 89.5 | 0.41 | 200 | 甲酸盐 | [ | |
| 20%-Cu@ZrO2-U | 533 | 3 | 3 | 2400 | 12.1 | 70.5 | 0.073 | 100 | 甲酸盐 | [ | |
| In2O3@ZrO2-MIL-68@UiO-66 | 563 | 3 | — | — | 10.4 | 84.6 | 0.29 | — | 甲酸盐 | [ | |
| CuO/s-UiO-66 (4.29%) | 513 | 3 | — | 18000 | 2.43 | 76.8 | 2.649 | 130 | 甲酸盐 | [ | |
| 混合催化剂 | |||||||||||
| PdCu/Ce0.3Zr0.7O2 (PdCu/CZ-3) | 523 | 5 | 3 | 3600 | 25.5 | 30~40 | 0.07 | >100 | 甲酸盐 | [ | |
| Ag/In2O3 | 573 | 5 | H2∶CO2∶N2= 76∶19∶5 | 21000 | 13.6 | 58.2 | 0.453 | 10 | CO加氢 | [ | |
| 0.8%Pd-ZnZrO x | 593 | 4 | H2∶CO2∶N2= 76∶19∶5 | 24000 | 约18 | 约60 | 约0.6 | 100 | 甲酸盐 | [ | |
| 催化剂 | 温度 /K | 压力 /MPa | H2∶CO2 | 气体时空速度 /mL∙h-1∙g-1 | CO2转化率 /% | 甲醇选择性 /% | 时空产率 /gMeOH∙gcat-1∙h-1 | 催化剂稳定性/h | 反应 途径 | 参考文献 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Cu基催化剂 | |||||||||||
| CuZnAl | 533 | 1.5 | 3 | — | 2 | 约54 | 0.73 | — | 甲酸盐 | [ | |
| Cu-20%MgO/ZnO | 473 | 3 | H2∶CO2∶N2= 3∶1∶1 | 7200 | 8.7 | 99 | 0.202 | >120 | — | [ | |
| Cu-ZrO2 | 493 | 3 | H2∶CO2∶Ar= 72∶24∶4 | 15000 | 7.2 | 约77.8 | 2.617 | 约16 | CO加氢 | [ | |
| 30%CuO/49.65%ZnO/20.35%Al2O3 | 575 | 8.5 | 4 | 19000 | 13 | 50 | 0.22 | — | — | [ | |
| 60%CuO-30%ZnO10%Al2O3 | 575 | 8.5 | 4 | 19000 | 21 | 49.5 | 0.425 | — | — | ||
| 60%CuO-27%ZnO/3%La2O3/10%Al2O3 | 575 | 8.5 | 4 | 55000 | 10 | 65 | 0.79 | — | — | ||
| 贵金属基催化剂 | |||||||||||
| Pt(3)/MoO x (30)/TiO2 | 423 | — | 5 | — | — | 约85 | — | — | 甲酸盐 | [ | |
| PdZn/CeO2 | 473 | 2 | 3 | 3600 | 14.1 | 97.2 | 0.17 | >100 | 甲酸盐 | [ | |
| PdZn/ZnO/SiO2 | 533 | 5 | 3 | 60000 | 3.3 | 65.3 | 0.443 | — | — | [ | |
| 金属氧化物催化剂 | |||||||||||
| In2O3/ZrO2 | 573 | 5 | 4∶1 | 16000 | 5.2 | 99.8 | 0.295 | 1000 | — | [ | |
| hexagonalIn2O3 | 543 | 5 | 4∶1 | 20000 | 6.7 | 99.5 | 0.365 | 136 | 甲酸盐 | [ | |
| 固溶体催化剂 | |||||||||||
| ZnO-ZrO2 | 588-593 | 5 | (3∶1)~(4∶1) | 24000 | >10%(单程) | 86~91 | — | >500 | 甲酸盐 | [ | |
| 有序介孔结构ZnO-ZrO2 | 593 | 5.5 | H2∶CO2∶Ar= 72∶24∶4 | 24000 | 约10 | 约81 | 0.708 | 40 | — | [ | |
| 金属有机框架催化剂 | |||||||||||
| Cu@FAU | 513 | 3 | 3 | 12000 | 11.5 | 89.5 | 0.41 | 200 | 甲酸盐 | [ | |
| 20%-Cu@ZrO2-U | 533 | 3 | 3 | 2400 | 12.1 | 70.5 | 0.073 | 100 | 甲酸盐 | [ | |
| In2O3@ZrO2-MIL-68@UiO-66 | 563 | 3 | — | — | 10.4 | 84.6 | 0.29 | — | 甲酸盐 | [ | |
| CuO/s-UiO-66 (4.29%) | 513 | 3 | — | 18000 | 2.43 | 76.8 | 2.649 | 130 | 甲酸盐 | [ | |
| 混合催化剂 | |||||||||||
| PdCu/Ce0.3Zr0.7O2 (PdCu/CZ-3) | 523 | 5 | 3 | 3600 | 25.5 | 30~40 | 0.07 | >100 | 甲酸盐 | [ | |
| Ag/In2O3 | 573 | 5 | H2∶CO2∶N2= 76∶19∶5 | 21000 | 13.6 | 58.2 | 0.453 | 10 | CO加氢 | [ | |
| 0.8%Pd-ZnZrO x | 593 | 4 | H2∶CO2∶N2= 76∶19∶5 | 24000 | 约18 | 约60 | 约0.6 | 100 | 甲酸盐 | [ | |
| 1 | DUSENGE Mirindi Eric, DUARTE André Galvao, Danielle A WAY. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration[J]. New Phytologist, 2019, 221(1): 32-49. |
| 2 | TANG Chizhou, TANG Shan, SHA Feng, et al. Insights into the selectivity determinant and rate-determining step of CO2 hydrogenation to methanol[J]. The Journal of Physical Chemistry C, 2022, 126(25): 10399-10407. |
| 3 | BOLAND Mike J, Allan N RAE, VEREIJKEN Johan M, et al. The future supply of animal-derived protein for human consumption[J]. Trends in Food Science & Technology, 2013, 29(1): 62-73. |
| 4 | PEREIRA Antia G, Maria FRAGA-CORRAL, Paula GARCIA-OLIVEIRA, et al. Single-cell proteins obtained by circular economy intended as a feed ingredient in aquaculture[J]. Foods, 2022, 11(18): 2831. |
| 5 | GAO Yurong, LI Dapeng, LIU Yang. Production of single cell protein from soy molasses using Candida tropicalis [J]. Annals of Microbiology, 2012, 62(3): 1165-1172. |
| 6 | SCHRADER Jens, SCHILLING Martin, HOLTMANN Dirk, et al. Methanol-based industrial biotechnology: Current status and future perspectives of methylotrophic bacteria[J]. Trends in Biotechnology, 2009, 27(2): 107-115. |
| 7 | BERTAU Martin, OFFERMANNS Heribert, PLASS Ludolf, et al. Methanol: the basic chemical and energy feedstock of the future: Asinger’s vision today[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. |
| 8 | DU Xianlong, JIANG Zheng, SU Dangsheng, et al. Research progress on the indirect hydrogenation of carbon dioxide to methanol[J]. ChemSusChem, 2016, 9(4): 322-332. |
| 9 | Kerstin SCHULTENKÄMPER, BRITO Luciana F, Marina Gil LÓPEZ, et al. Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus [J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5879-5889. |
| 10 | MO Xuhua, ZHANG Hui, WANG Tianmin, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4515-4532. |
| 11 | CAI Peng, DUAN Xingpeng, WU Xiaoyan, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
| 12 | SOBHI Mostafa, ZAKARIA Eman, ZHU Feifei, et al. Advanced microbial protein technologies are promising for supporting global food-feed supply chains with positive environmental impacts[J]. Science of the Total Environment, 2023, 894: 165044. |
| 13 | RITALA Anneli, HÄKKINEN Suvi T, TOIVARI Mervi, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016[J]. Frontiers in Microbiology, 2017, 8: 2009. |
| 14 | REN Menghao, ZHANG Yanmin, WANG Xuan, et al. Catalytic hydrogenation of CO2 to methanol: A review[J]. Catalysts, 2022, 12(4): 403. |
| 15 | AHMAD Kaisar, UPADHYAYULA Sreedevi. Greenhouse gas CO2 hydrogenation to fuels: A thermodynamic analysis[J]. Environmental Progress & Sustainable Energy, 2019, 38(1): 98-111. |
| 16 | MARTIN Oliver, MARTÍN Dr Antonio J, MONDELLI Dr Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265. |
| 17 | WANG Guo, MAO Dongsen, GUO Xiaoming, et al. Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-M x O y catalysts (M=Cr, Mo and W)[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4197-4207. |
| 18 | WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290. |
| 19 | ZABILSKIY Maxim, SUSHKEVICH Vitaly L, PALAGIN Dennis, et al. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol[J]. Nature Communications, 2020, 11(1): 2409. |
| 20 | SHARMA Sachin Kumar, KHAN Tuhin Suvra, SINGHA Rajib Kumar, et al. Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO2 [J]. Applied Catalysis A: General, 2021, 623: 118239. |
| 21 | YU Jiahui, LIU Shuai, MU Xueliang, et al. Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@HKUST-1 composites for the enhanced CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2021, 419: 129656. |
| 22 | Sardar ALI, KUMAR Dharmesh, KHADER Mahmoud M, et al. Synthesis and evaluation of lanthana modified Cu-based catalysts for CO2 hydrogenation to value added products[J]. Molecular Catalysis, 2023, 543: 113146. |
| 23 | TOYAO Takashi, KAYAMORI Shingo, MAENO Zen, et al. Heterogeneous Pt and MoO x co-loaded TiO2 catalysts for low-temperature CO2 hydrogenation to form CH3OH[J]. ACS Catalysis, 2019, 9(9): 8187-8196. |
| 24 | OJELADE Opeyemi A, ZAMAN Sharif F, DAOUS Muhammad A, et al. Optimizing Pd: Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2019, 584: 117185. |
| 25 | ZABILSKIY Dr Maxim, SUSHKEVICH Dr Vitaly L, NEWTON Dr Mark A, et al. Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO-based catalysts: The role of palladium–zinc alloy in selective methanol synthesis[J]. Angewandte Chemie International Edition, 2021, 60(31): 17053-17059. |
| 26 | DANG Shanshan, QIN Bin, YANG Yong, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25): eaaz2060. |
| 27 | HAN Zhe, TANG Chizhou, SHA Feng, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. Journal of Catalysis, 2021, 396: 242-250. |
| 28 | CHAI Yuchao, QIN Bin, LI Bonan, et al. Zeolite-encaged mononuclear copper centers catalyze CO2 selective hydrogenation to methanol[J]. National Science Review, 2023, 10(7): nwad043. |
| 29 | CHEN Guoqing, YU Jun, LI Gonghui, et al. Cu+-ZrO2 interfacial sites with highly dispersed copper nanoparticles derived from Cu@UiO-67 hybrid for efficient CO2 hydrogenation to methanol[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2605-2616. |
| 30 | CUI Wengang, ZHANG Qiang, ZHOU Lei, et al. Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to methanol[J]. Small, 2023, 19(1): 2204914. |
| 31 | WANG Chao, KOSARI Mohammadreza, XI Shibo, et al. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO2 hydrogenation to methanol[J]. Advanced Functional Materials, 2023, 33(13): 2212478. |
| 32 | WANG Xilong, ALABSI Mohnnad H, ZHENG Peng, et al. PdCu supported on dendritic mesoporous Ce x Zr1- x O2 as superior catalysts to boost CO2 hydrogenation to methanol[J]. Journal of Colloid and Interface Science, 2022, 611: 739-751. |
| 33 | SUN Kaihang, ZHANG Zhitao, SHEN Chenyang, et al. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol[J]. Green Energy & Environment, 2022, 7(4): 807-817. |
| 34 | LEE Kyungho, ANJUM Uzma, ARAÚJO Thaylan Pinheiro, et al. Atomic Pd-promoted ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Applied Catalysis B: Environmental, 2022, 304: 120994. |
| 35 | ARAÚJO Thaylan Pinheiro, MITCHELL Sharon, Javier PÉREZ-RAMÍREZ. Design principles of catalytic materials for CO2 hydrogenation to methanol [J]. Advanced Materials, 2024, 36(48): 2470385. |
| 36 | CHEN Kun, FANG Huihuang, WU Simson, et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaO x interfaces[J]. Applied Catalysis B: Environmental, 2019, 251: 119-129. |
| 37 | TADA Shohei, SATOKAWA Shigeo. Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2 [J]. Catalysis Communications, 2018, 113: 41-45. |
| 38 | WANG Guo, MAO Dongsen, GUO Xiaoming, et al. Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-M x O y catalysts (M=Cr, Mo and W)[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4197-4207. |
| 39 | TWIGG Martyn V, SPENCER Michael S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis[J]. Topics in Catalysis, 2003, 22(3): 191-203. |
| 40 | FICHTL Matthias B, SCHLERETH David, JACOBSEN Nikolas, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Applied Catalysis A: General, 2015, 502: 262-270. |
| 41 | WANG Weiwei, QU Zhenping, SONG Lixin, et al. Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS[J]. Journal of Catalysis, 2020, 382: 129-140. |
| 42 | DASIREDDY Venkata D B C, LIKOZAR Blaž. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity[J]. Renewable Energy, 2019, 140: 452-460. |
| 43 | LEI Hong, HOU Zhaoyin, XIE Jianwei. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016, 164: 191-198. |
| 44 | DOU Maobin, ZHANG Minhua, CHEN Yifei, et al. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst[J]. Surface Science, 2018, 672: 7-12. |
| 45 | WANG Jing, SUN Kaihang, JIA Xinyu, et al. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catalysis Today, 2021, 365: 341-347. |
| 46 | YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306. |
| 47 | CHEN Tianyuan, CAO Chenxi, CHEN Tianbao, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9): 8785-8797. |
| 48 | CHOU Chenyu, LOBO Raul F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Applied Catalysis A: General, 2019, 583: 117144. |
| 49 | WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance M a ZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. |
| 50 | PATIL Tushar, NAJI Arkan, MONDAL Ujjal, et al. Sustainable methanol production from carbon dioxide: Advances, challenges, and future prospects[J]. Environmental Science and Pollution Research International, 2024, 31(32): 44608-44648. |
| 51 | SHULENBERGER Arthur M, JONSSON Fridrik Ragnar, INGOLFSSON Oddur, et al. Process for producing liquid fuel from carbon dioxide and water: US2007244208[P]. 2007-10-18. |
| 52 | ZHOU Zixuan, GAO Peng. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
| 53 | ZHEN Xudong, WANG Yang. An overview of methanol as an internal combustion engine fuel[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 477-493. |
| 54 | CUI Lanyu, WANG Shanshan, GUAN Changge, et al. Breeding of methanol-tolerant methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution[J]. Biotechnology Journal, 2018, 13(6): 1700679. |
| 55 | WESTLAKE Richard. Large-scale continuous production of single cell protein[J]. Chemie Ingenieur Technik, 1986, 58(12): 934-937. |
| 56 | YANG Xueting, ZHENG Zhaojuan, WANG Yu. Bacillus methanolicus: An emerging chassis for low-carbon biomanufacturing[J]. Trends in Biotechnology, 2025, 43(2):274-277. |
| 57 | JAKOBSEN Øyvind M, BENICHOU Aline, FLICKINGER Michael C, et al. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus [J]. Journal of Bacteriology, 2006, 188(8): 3063-3072. |
| 58 | CAI Peng, WU Xiaoyan, DENG Jun, et al. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29): e2201711119. |
| 59 | CHEN Frederic Y-H, JUNG Hsin-Wei, TSUEI Chao-Yin, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14. |
| 60 | REITER Michael A, BRADLEY Timothy, BÜCHEL Lars A, et al. A synthetic methylotrophic Escherichia coli as a chassis for bioproduction from methanol[J]. Nature Catalysis, 2024, 7(5): 560-573. |
| 61 | ZHAN Chunjun, LI Xiaowei, LAN Guangxu, et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph[J]. Nature Catalysis, 2023, 6: 435-450. |
| 62 | WITTHOFF Sabrina, SCHMITZ Katja, Sebastian NIEDENFÜHR, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism[J]. Applied and Environmental Microbiology, 2015, 81(6): 2215-2225. |
| 63 | ANTHONY C. Assimilation of carbon by methylotrophs[J]. Biotechnology, 1991, 18: 79-109. |
| 64 | ANTHONY Christopher. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway[J]. Science Progress, 2011, 94(Pt 2): 109-137. |
| 65 | KRÜSEMANN Jan L, RAINALDI Vittorio, COTTON Charles AR, et al. The cofactor challenge in synthetic methylotrophy: Bioengineering and industrial applications[J]. Current Opinion in Biotechnology, 2023, 82: 102953. |
| 66 | NAYAK Dipti D, MARX Christopher J. Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1[J]. PLoS One, 2014, 9(9): e107887. |
| 67 | BOZDAG Ahmet, KOMIVES Claire, FLICKINGER Michael C. Growth of Bacillus methanolicus in 2 M methanol at 50 ℃: The effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7): 1027-1038. |
| 68 | GUO Yuanke, LIAO Yang, WANG Jing, et al. Methylotrophy of Pichia pastoris: Current advances, applications, and future perspectives for methanol-based biomanufacturing[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(5): 1741-1752. |
| 69 | WANG Yu, FAN Liwen, TUYISHIME Philibert, et al. Synthetic methylotrophy: A practical solution for methanol-based biomanufacturing[J]. Trends in Biotechnology, 2020, 38(6): 650-666. |
| 70 | COTTON Charles AR, CLAASSENS Nico J, Sara BENITO-VAQUERIZO, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2020, 62: 168-180. |
| 71 | BELKHELFA Sophia, ROCHE David, DUBOIS Ivan, et al. Continuous culture adaptation of Methylobacterium extorquens AM1 and TK 0001 to very high methanol concentrations[J]. Frontiers in Microbiology, 2019, 10: 1313. |
| 72 | MOSER Josef W, PRIELHOFER Roland, GERNER Samuel M, et al. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris [J]. Microbial Cell Factories, 2017, 16(1): 49. |
| 73 | JIAN Xingjin, GUO Xiaojie, WANG Jia, et al. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
| 74 | FELDMAN M Y. Reactions of nucleic acids and nucleoproteins with formaldehyde[J]. Progress in Nucleic Acid Research and Molecular Biology, 1973, 13: 1-49. |
| 75 | WOOLSTON Benjamin M, KING Jason R, REITER Michael, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli [J]. Nature Communications, 2018, 9(1): 2387. |
| 76 | GAO Jiaoqi, LI Yunxia, YU Wei, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943. |
| 77 | Bojana BAJIĆ, Damjan VUČUROVIĆ, Đurđina VASIĆ, et al. Biotechnological production of sustainable microbial proteins from agro-industrial residues and by-products[J]. Foods, 2023, 12(1): 107. |
| 78 | MISHRA Akanksha, NTIHUGA Jean Nepomuscene, MOLITOR Bastian, et al. Power-to-protein: Carbon fixation with renewable electric power to feed the world[J]. Joule, 2020, 4(6): 1142-1147. |
| 79 | MENG Jiao, LIU Shufan, GAO Le, et al. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale[J]. Microbial Cell Factories, 2023, 22(1): 198. |
| 80 | GAO Le, MENG Jiao, DAI Wuling, et al. Deciphering cell wall sensors enabling the construction of robust P. pastoris for single-cell protein production[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 178. |
| 81 | SIMÕES Ana Cristina Pantoja, FERNANDES Rodrigo Pimentel, BARRETO Maysa Silva, et al. Growth of Methylobacterium organophilum in methanol for the simultaneous production of single-cell protein and metabolites of interest[J]. Food Technology and Biotechnology, 2022, 60(3): 338-349. |
| 82 | CARDOSO ALVES Samara, Erick DÍAZ-RUIZ, LISBOA Bruna, et al. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world[J]. Food Research International, 2023, 166: 112596. |
| 83 | ALVAREZ-LARIO B, MACARRON-VICENTE J. Uric acid and evolution[J]. Rheumatology, 2010, 49(11): 2010-2015. |
| 84 | MORENO J M, SANCHEZ-MONTERO J M, BALLESTEROS A, et al. Hydrolysis of nucleic acids in single-cell protein concentrates using immobilized benzonase[J]. Applied Biochemistry and Biotechnology, 1991, 31(1): 43-51. |
| 85 | ABOU-ZEID Abou-Zeid A, KHAN Jalaluddin A, ABULNAJA Khalid O. On methods for reduction of nucleic acids content in a single-cell protein from gas oil[J]. Bioresource Technology, 1995, 52(1): 21-24. |
| 86 | LI YU pin, AHMADI Fatemeh, KARIMAN Khalil, et al. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production[J]. NPJ Science of Food, 2024, 8(1): 66. |
| 87 | HARDY Ronald W, PATRO Biswamitra, Catherine PUJOL-BAXLEY, et al. Partial replacement of soybean meal with Methylobacterium extorquens single-cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum)[J]. Aquaculture Research, 2018, 49(6): 2218-2224. |
| 88 | TLUSTY Michael, RHYNE Andrew, SZCZEBAK Joseph T, et al. A transdisciplinary approach to the initial validation of a single cell protein as an alternative protein source for use in aquafeeds[J]. PeerJ, 2017, 5: e3170. |
| 89 | REKDAL Vayu Maini, VAN DER LUIJT Casper R B, CHEN Yan, et al. Edible mycelium bioengineered for enhanced nutritional value and sensory appeal using a modular synthetic biology toolkit[J]. Nature Communications, 2024, 15(1): 2099. |
| [1] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| [2] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [3] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [4] | HAN Yingna, LI Li, ZHANG Linzi, AN Jinze, LI Wenxiu, ZHANG Tao. Separation of methanol-acetonitrile azeotrope by ionic liquid extractive distillation [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 660-668. |
| [5] | HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183. |
| [6] | ZHOU Yu, TANG Tian, XIONG Ziyou, WEI Qi. Methanol to olefin wastewater treatment based on a two-stage microchannel separation process [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 100-108. |
| [7] | ZHOU Yu, XIA Taiyang, WEI Qi, TANG Tian, TIAN Lei. Optimization of micro-channel coupled reverse osmosis membrane series treatment of methanol to olefin wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 43-51. |
| [8] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
| [9] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
| [10] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
| [11] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
| [12] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
| [13] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
| [14] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
| [15] | FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |