| 1 |
赵宁波, 郑洪涛, 闻雪友. 液态纳米燃料及其强化燃烧研究进展[J]. 化工进展, 2018, 37(4): 1364-1373.
|
|
ZHAO Ningbo, ZHENG Hongtao, WEN Xueyou. Research progress on liquid nanofuel and its combustion enhancement[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1364-1373.
|
| 2 |
祝妍妮, 王维, 孙闫晨昊, 等. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710.
|
|
ZHU Yanni, WANG Wei, SUN Yanchenhao, et al. Numerical simulation of centrifugal spray drying based on single-droplet evaporation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710.
|
| 3 |
张络明, 焦阳, 苑志伟, 等. 催化剂喷雾成型雾化过程分步式模拟技术及验证[J]. 石油炼制与化工, 2024, 55(1): 158-163.
|
|
ZHANG Luoming, JIAO Yang, YUAN Zhiwei, et al. Step simulation technique and experimental verification of catalyst spray forming atomlzatlon process[J]. Petroleum Processing Petrochemical Technology, 2024, 55(1): 158-163.
|
| 4 |
CHIEN Chih-Hsuan, CHEN Tinglun, WU Xiaoyan, et al. Bilayer lubricant‐infused particulate films as slippery protective coatings with durable anticorrosion and antifouling performance[J]. Advanced Materials Interfaces, 2022, 9(11): 2102144.
|
| 5 |
MORALES M, MUNOZ-MARTIN D, MARQUEZ A, et al. Laser-induced forward transfer techniques and applications[J]. Advances in Laser Materials Processing, 2018: 339-379.
|
| 6 |
朱冬生, 孙纪远, 宋印玺, 等. 喷雾冷却技术综述及纳米流体喷雾应用前景[J]. 化工进展, 2009, 28(3): 368-373.
|
|
ZHU Dongsheng, SUN Jiyuan, SONG Yinxi, et al. Review of spray cooling technique and prospect of spray cooling using nanofluids[J]. Chemical Industry and Engineering Progress, 2009, 28(3): 368-373.
|
| 7 |
FANSLER Todd D, PARRISH Scott E. Spray measurement technology: A review[J]. Measurement Science and Technology, 2015, 26(1): 012002.
|
| 8 |
RIEFLER Norbert, SCHUH Roman, WRIEDT Thomas. Investigation of a measurement technique to estimate concentration and size of inclusions in droplets[J]. Measurement Science and Technology, 2007, 18(7): 2209-2218.
|
| 9 |
LI Lingxi, STEGMANN Patrick G, ROSENKRANZ Simon, et al. Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: Application to the time-shift technique[J]. Optics Express, 2019, 27(25): 36388-36404.
|
| 10 |
LI Can, WU Yingchun, WU Xuecheng, et al. Simultaneous measurement of refractive index, diameter and colloid concentration of a droplet using rainbow refractometry[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245: 106834.
|
| 11 |
LI Can, Qimeng LYU, LI Ning, et al. Dual-wavelength extinction rainbow refractometry for in-situ characterization of colloidal droplets[J]. Powder Technology, 2022, 399: 117098.
|
| 12 |
LECUN Yann, BENGIO Yoshua, HINTON Geoffrey. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
| 13 |
MO Yujian, WU Yan, YANG Xinneng, et al. Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626-646.
|
| 14 |
SOLANKI S, LEE S, JEBAKUMAR A, et al. Machine learning for predicting microfluidic droplet generation properties[J]. Computers & Fluids, 2022, 247: 105651.
|
| 15 |
WANG Zhibo, HE Feng, ZHANG Haixiang, et al. Characterization of the in-focus droplets in shadowgraphy systems via deep learning-based image processing method[J]. Physics of Fluids, 2022, 34(11): 113316.
|
| 16 |
JOSE Basil, HAMPP Fabian. Machine learning based spray process quantification[J]. International Journal of Multiphase Flow, 2024, 172: 104702.
|
| 17 |
ADE Someshwar Sanjay, GUPTA Deepa, CHANDRALA Lakshmana Dora, et al. Application of deep learning and inline holography to estimate the droplet size distribution[J]. International Journal of Multiphase Flow, 2024, 177: 104853.
|
| 18 |
HASTI Veeraraghava Raju, SHIN Dongyun. Denoising and fuel spray droplet detection from light-scattered images using deep learning[J]. Energy and AI, 2022, 7: 100130.
|
| 19 |
YANG Haixu, YU Jiahui, JIN Luhong, et al. A deep learning based method for automatic analysis of high-throughput droplet digital PCR images[J]. Analyst, 2023, 148(2): 239-247.
|
| 20 |
张敏, 刘明侯. 基于深度学习的微流体液滴特征检测方法[J]. 新技术新工艺, 2021(7): 75-79.
|
|
ZHANG Min, LIU Minghou. Research on method of droplets characteristic detection in microfluidics based on deep learning[J]. New Technology & New Process, 2021(7): 75-79.
|
| 21 |
ZHANG Shuyuan, LIANG Xiao, HUANG Xinye, et al. Precise and fast microdroplet size distribution measurement using deep learning[J]. Chemical Engineering Science, 2022, 247: 116926.
|
| 22 |
HUYNH Nhut, NGUYEN Kim-Doang. Real-time droplet detection for agricultural spraying systems: A deep learning approach[J]. Machine Learning and Knowledge Extraction, 2024, 6(1): 259-282.
|
| 23 |
DOSOVITSKIY Alexey, BEYER Lucas, KOLESNIKOV Alexander, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2024-09-12]. .
|
| 24 |
ZHOU Daquan, KANG Bingyi, JIN Xiaojie, et al. DeepViT: Towards deeper vision transformer[EB/OL]. (2021-04-19)[2024-09-12]. .
|
| 25 |
LI Can, Qimeng LYU, LI Ning, et al. Planar rainbow refractometry[J]. Optics Letters, 2021, 46(23): 5898-5901.
|
| 26 |
Qimeng LYU, WU Yingchun, WANG Xinhao, et al. Measurement of interacting ethanol droplets evaporation at moderately elevated temperature and pressure using phase rainbow refractometry[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123220.
|
| 27 |
LI Can, WU Xuecheng, CAO Jianzheng, et al. Application of rainbow refractometry for measurement of droplets with solid inclusions[J]. Optics & Laser Technology, 2018, 98: 354-362.
|
| 28 |
BERGLUND Richard N, LIU Benjamin Y H. Generation of monodisperse aerosol standards[J]. Environmental Science & Technology, 1973, 7(2): 147-153.
|
| 29 |
PENG Wenmin, LI Can, LI Tianchi, et al. Anti-noise and denoising performance of global rainbow processing[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 304: 108619.
|