Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1632-1650.DOI: 10.16085/j.issn.1000-6613.2024-0402
• Resources and environmental engineering • Previous Articles Next Articles
LIU Yanyan1(
), ZHOU Shuai2, HE Ziqi1, LYU Yi1
Received:2024-03-11
Revised:2024-05-23
Online:2025-04-15
Published:2025-03-25
Contact:
LIU Yanyan
通讯作者:
刘燕燕
作者简介:刘燕燕(1981—),女,教授,研究方向为道路新型材料的研发。E-mail:lyanyan@cqjtu.edu.cn。
基金资助:CLC Number:
LIU Yanyan, ZHOU Shuai, HE Ziqi, LYU Yi. Research progress on test methods and inhibition strategies of asphalt fumes[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1632-1650.
刘燕燕, 周帅, 何紫琪, 吕艺. 沥青烟气检测方法及抑制措施研究进展[J]. 化工进展, 2025, 44(3): 1632-1650.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0402
| 方法 | 烟气产物 | 检测出组分数量 | 优点 | 缺点 |
|---|---|---|---|---|
| 重量法 | 烟颗粒物 | 无法单独确定颗粒物成分 | 原理简单;操作简便;实验成本低;可搭配其他方法使用 | 无法分析气体组分与含量;无法单独确定颗粒物成分;实验时间长;实验误差随着收集装置的差异而变化 |
| 紫外光度法 | 气体 | 1种 | 送检成本较低;检测时间短;结果精度高 | 无法确定沥青颗粒物质量;难以确定其他组分含量与占比 |
| 便携式检测仪 | 烟颗粒物 | 1~4种 | 实时检测;操作简便;检测时间短;现场施工常用 | 仪器成本高;使用年限较短;精度因检测仪器而异;检测烟颗粒物与气体种类较少 |
| 气体 | 1~6种 | |||
| GC-MS及其衍生技术 | 气体 | 10种以上 | 检测多种组分与含量;实验精度高;检测时间短 | 无法确定沥青颗粒物质量;送检成本高;组分分析依赖数据库 |
| 方法 | 烟气产物 | 检测出组分数量 | 优点 | 缺点 |
|---|---|---|---|---|
| 重量法 | 烟颗粒物 | 无法单独确定颗粒物成分 | 原理简单;操作简便;实验成本低;可搭配其他方法使用 | 无法分析气体组分与含量;无法单独确定颗粒物成分;实验时间长;实验误差随着收集装置的差异而变化 |
| 紫外光度法 | 气体 | 1种 | 送检成本较低;检测时间短;结果精度高 | 无法确定沥青颗粒物质量;难以确定其他组分含量与占比 |
| 便携式检测仪 | 烟颗粒物 | 1~4种 | 实时检测;操作简便;检测时间短;现场施工常用 | 仪器成本高;使用年限较短;精度因检测仪器而异;检测烟颗粒物与气体种类较少 |
| 气体 | 1~6种 | |||
| GC-MS及其衍生技术 | 气体 | 10种以上 | 检测多种组分与含量;实验精度高;检测时间短 | 无法确定沥青颗粒物质量;送检成本高;组分分析依赖数据库 |
| 通气装置 | 除水措施 | 烟颗粒物收集 | 气体收集与分析 | 参考文献 |
|---|---|---|---|---|
| 无 | 疏水滤膜 | PTFE滤膜(直径37mm,孔径0.45μm) | XAD-2吸附剂 | [ |
| 无 | 疏水滤膜 | PTFE滤膜(直径25mm,孔径0.22μm) | 气袋(GC-MS) | [ |
| 抽气泵 | 无水氯化钙;疏水滤膜 | PTFE滤膜(直径37mm,孔径0.1μm) | 环己烷溶液(紫外光度法) | [ |
充气泵 抽气泵 | 无 | 玻璃纤维滤筒 | 气袋(GC-MS); 环己烷溶液(紫外光度法) | [ |
| 无 | 冻干处理 | 聚丙烯纤维棉 | 无 | [ |
| 充气泵 | 烘干处理 | 聚丙烯滤膜 | 无 | [ |
| 无 | 疏水滤膜 | PTFE滤膜(直径47mm,孔径0.22μm) | 气袋(GC-MS); 便携式VOCs检测仪 | [ |
| 通气装置 | 除水措施 | 烟颗粒物收集 | 气体收集与分析 | 参考文献 |
|---|---|---|---|---|
| 无 | 疏水滤膜 | PTFE滤膜(直径37mm,孔径0.45μm) | XAD-2吸附剂 | [ |
| 无 | 疏水滤膜 | PTFE滤膜(直径25mm,孔径0.22μm) | 气袋(GC-MS) | [ |
| 抽气泵 | 无水氯化钙;疏水滤膜 | PTFE滤膜(直径37mm,孔径0.1μm) | 环己烷溶液(紫外光度法) | [ |
充气泵 抽气泵 | 无 | 玻璃纤维滤筒 | 气袋(GC-MS); 环己烷溶液(紫外光度法) | [ |
| 无 | 冻干处理 | 聚丙烯纤维棉 | 无 | [ |
| 充气泵 | 烘干处理 | 聚丙烯滤膜 | 无 | [ |
| 无 | 疏水滤膜 | PTFE滤膜(直径47mm,孔径0.22μm) | 气袋(GC-MS); 便携式VOCs检测仪 | [ |
| 多孔材料 | 特点 | 材料参数 | 试验方法 | 试验对象 | 掺量/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 活性炭 | 比表面积大; 表面存在活性基团; 表面多孔; 表面存在能量差; 微孔介孔共存 | 纯度95% | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 | 27.8 | [ |
| 密度0.5g/cm3 | 4.0 | 30.3 | |||||
| 粒度D90=50μm | 5.0 | 33.5 | |||||
| 含水率≤2% | 6.0 | 30.8 | |||||
纯度95% 密度0.5g/cm3 粒度D90=50μm | 紫外光度法 | PJ90# | 3.0 | 33.9 | [ | ||
| 4.0 | 38.4 | ||||||
| 5.0 | 42.0 | ||||||
| 6.0 | 39.3 | ||||||
pH=5~7 干燥失重10.0% 灼烧残渣2.0% | 重量法 | SK90# | 1.0 | 83.4 | [ | ||
| 2.0 | 29.4 | ||||||
| 3.0 | 83.0 | ||||||
| 4.0 | 72.6 | ||||||
| 沸石 | 比表面积大; 微孔/介孔共存; 热稳定性强 | 自制Ca(OH)2沸石 | 便携式检测仪 GC-MS | 沥青混合料 | 2.0 | 74.3 | [ |
| 4.0 | 80.5 | ||||||
| 6.0 | 83.1 | ||||||
密度1.98g/cm3 细度D50=29.162μm D100=88.255μm | PY-GC-MS | 70#基质沥青 | 5.0 | 37.2 | [ | ||
| 硅铝比250~350 | TD-GC-MS | 70# C级 | A类 | 16.0 | [ | ||
| 硅铝比500~700 | C类 | 11.1 | |||||
| 硅铝比900~1500 | E类 | 42.9 |
| 多孔材料 | 特点 | 材料参数 | 试验方法 | 试验对象 | 掺量/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 活性炭 | 比表面积大; 表面存在活性基团; 表面多孔; 表面存在能量差; 微孔介孔共存 | 纯度95% | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 | 27.8 | [ |
| 密度0.5g/cm3 | 4.0 | 30.3 | |||||
| 粒度D90=50μm | 5.0 | 33.5 | |||||
| 含水率≤2% | 6.0 | 30.8 | |||||
纯度95% 密度0.5g/cm3 粒度D90=50μm | 紫外光度法 | PJ90# | 3.0 | 33.9 | [ | ||
| 4.0 | 38.4 | ||||||
| 5.0 | 42.0 | ||||||
| 6.0 | 39.3 | ||||||
pH=5~7 干燥失重10.0% 灼烧残渣2.0% | 重量法 | SK90# | 1.0 | 83.4 | [ | ||
| 2.0 | 29.4 | ||||||
| 3.0 | 83.0 | ||||||
| 4.0 | 72.6 | ||||||
| 沸石 | 比表面积大; 微孔/介孔共存; 热稳定性强 | 自制Ca(OH)2沸石 | 便携式检测仪 GC-MS | 沥青混合料 | 2.0 | 74.3 | [ |
| 4.0 | 80.5 | ||||||
| 6.0 | 83.1 | ||||||
密度1.98g/cm3 细度D50=29.162μm D100=88.255μm | PY-GC-MS | 70#基质沥青 | 5.0 | 37.2 | [ | ||
| 硅铝比250~350 | TD-GC-MS | 70# C级 | A类 | 16.0 | [ | ||
| 硅铝比500~700 | C类 | 11.1 | |||||
| 硅铝比900~1500 | E类 | 42.9 |
| 层状材料 | 特点 | 材料参数 | 收集方法 | 实验对象 | 掺量(质量分数)/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 膨胀石墨 | 比表面积大; 疏松多孔结构; 热稳定性好; 范德华力作用 | 形貌:蠕虫状 | 重量法 | SK70# | 0.50 | 61.1 | [ |
| 1.00 | 60.6 | ||||||
| 1.50 | 61.6 | ||||||
| 2.00 | 61.2 | ||||||
| 2.50 | 61.4 | ||||||
形貌:蠕虫状 晶系:六方晶系 密度2.25g/cm3 | 重量法 | 中海70# A级 | 0.25 | 69.1 | [ | ||
| 0.50 | 67.5 | ||||||
| 0.75 | 62.0 | ||||||
| 1.00 | 64.5 | ||||||
| 1.25 | 67.4 | ||||||
| 1.50 | 69.8 | ||||||
| 层状化合物 | Mg-Al双电层结构; 特殊层片结构; 范德华力作用 | 纯度99.5% 密度1.7g/cm3 粒度D90=0.4μm 含水率≤3% | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 4.0 5.0 | 6.70 9.80 8.50 | [ |
纯度99.5% 密度1.7g/cm3 粒度D90=0.4μm 含水率≤3% | TG-MS | PJ90# | 3.0 4.0 5.0 | 4.40 7.10 6.20 | [ | ||
| 粒度0.4μm±0.02μm | 重量法 GC-MS | 70#基质沥青 | 3.0 4.0 | 27.59 12.67 | [ |
| 层状材料 | 特点 | 材料参数 | 收集方法 | 实验对象 | 掺量(质量分数)/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 膨胀石墨 | 比表面积大; 疏松多孔结构; 热稳定性好; 范德华力作用 | 形貌:蠕虫状 | 重量法 | SK70# | 0.50 | 61.1 | [ |
| 1.00 | 60.6 | ||||||
| 1.50 | 61.6 | ||||||
| 2.00 | 61.2 | ||||||
| 2.50 | 61.4 | ||||||
形貌:蠕虫状 晶系:六方晶系 密度2.25g/cm3 | 重量法 | 中海70# A级 | 0.25 | 69.1 | [ | ||
| 0.50 | 67.5 | ||||||
| 0.75 | 62.0 | ||||||
| 1.00 | 64.5 | ||||||
| 1.25 | 67.4 | ||||||
| 1.50 | 69.8 | ||||||
| 层状化合物 | Mg-Al双电层结构; 特殊层片结构; 范德华力作用 | 纯度99.5% 密度1.7g/cm3 粒度D90=0.4μm 含水率≤3% | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 4.0 5.0 | 6.70 9.80 8.50 | [ |
纯度99.5% 密度1.7g/cm3 粒度D90=0.4μm 含水率≤3% | TG-MS | PJ90# | 3.0 4.0 5.0 | 4.40 7.10 6.20 | [ | ||
| 粒度0.4μm±0.02μm | 重量法 GC-MS | 70#基质沥青 | 3.0 4.0 | 27.59 12.67 | [ |
| 纳米材料 | 特点 | 材料参数 | 收集方法 | 试验对象 | 掺量(质量分数)/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 纳米碳酸钙 | 表面效应;小尺寸效应;吸附能力优良;与沥青相容性好 | — | 重量法 | SK70# | 3.0 4.0 6.0 | 4.8 5.7 7.4 | [ |
白度≥90% 粒径18~36nm 比表面积>42m2/g pH 9.0~9.6 水分≤0.3 | 重量法 | SK70# | 4.0 4.5 5.0 5.5 6.0 | 4.8 7.0 8.4 9.2 9.3 | [ | ||
| 电气石 | 具有压电性与热电性;释放负离子吸附正电颗粒而沉降;分散、还原VOC分子 | 颜色:黑色 粒径1.3μm 硬度7.4 pH 7~7.2 | 重量法 | SK90# | 12.0 14.0 16.0 18.0 | 40.3 63.7 90.2 88.7 | [ |
颜色:黑色 粒径45μm 硬度7.0~7.5 pH 7.0~7.2 | 重量法 | SK70# | 14.0 17.0 20.0 | 12.5 44.1 66.6 | [ |
| 纳米材料 | 特点 | 材料参数 | 收集方法 | 试验对象 | 掺量(质量分数)/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 纳米碳酸钙 | 表面效应;小尺寸效应;吸附能力优良;与沥青相容性好 | — | 重量法 | SK70# | 3.0 4.0 6.0 | 4.8 5.7 7.4 | [ |
白度≥90% 粒径18~36nm 比表面积>42m2/g pH 9.0~9.6 水分≤0.3 | 重量法 | SK70# | 4.0 4.5 5.0 5.5 6.0 | 4.8 7.0 8.4 9.2 9.3 | [ | ||
| 电气石 | 具有压电性与热电性;释放负离子吸附正电颗粒而沉降;分散、还原VOC分子 | 颜色:黑色 粒径1.3μm 硬度7.4 pH 7~7.2 | 重量法 | SK90# | 12.0 14.0 16.0 18.0 | 40.3 63.7 90.2 88.7 | [ |
颜色:黑色 粒径45μm 硬度7.0~7.5 pH 7.0~7.2 | 重量法 | SK70# | 14.0 17.0 20.0 | 12.5 44.1 66.6 | [ |
| 高分子材料 | 结构特征 | 材料参数 | 收集方法 | 试验对象 | 掺量/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| SBS改性剂 | 网状结构;溶胀作用;增加分子内聚力;与沥青相容性好;沥青热稳定性好 | 纯度99% 密度0.95g/cm3 | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 4.0 | 14.6 17.1 | [ |
嵌段比(S/B):30/70 挥发分≤0.48% 灰分≤0.18% 粒径<2mm | 重量法 | SK70# | 4.0 | 11.3 | [ | ||
| 4.5 | 17.5 | ||||||
| 5.0 | 21.3 | ||||||
| 5.5 | 24.5 | ||||||
| 6.0 | 26.1 | ||||||
纯度99% 密度0.95g/cm3 | 紫外光度法 | PJ90# | 3.0 | 22.1 | [ | ||
| 4.0 | 26.5 | ||||||
| 5.0 | 23.9 | ||||||
| 聚乙烯 | 网状结构;溶胀作用 | — | 重量法 | 基质沥青 | 1.0 | 10.2 | [ |
| 5.0 | 14.1 | ||||||
| — | 重量法 | SK70# | 1.0 | 4.0 | [ | ||
| 3.0 | 6.5 |
| 高分子材料 | 结构特征 | 材料参数 | 收集方法 | 试验对象 | 掺量/% | 抑制效果/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| SBS改性剂 | 网状结构;溶胀作用;增加分子内聚力;与沥青相容性好;沥青热稳定性好 | 纯度99% 密度0.95g/cm3 | 重量法 紫外光度法 TG-MS | PJ90# | 3.0 4.0 | 14.6 17.1 | [ |
嵌段比(S/B):30/70 挥发分≤0.48% 灰分≤0.18% 粒径<2mm | 重量法 | SK70# | 4.0 | 11.3 | [ | ||
| 4.5 | 17.5 | ||||||
| 5.0 | 21.3 | ||||||
| 5.5 | 24.5 | ||||||
| 6.0 | 26.1 | ||||||
纯度99% 密度0.95g/cm3 | 紫外光度法 | PJ90# | 3.0 | 22.1 | [ | ||
| 4.0 | 26.5 | ||||||
| 5.0 | 23.9 | ||||||
| 聚乙烯 | 网状结构;溶胀作用 | — | 重量法 | 基质沥青 | 1.0 | 10.2 | [ |
| 5.0 | 14.1 | ||||||
| — | 重量法 | SK70# | 1.0 | 4.0 | [ | ||
| 3.0 | 6.5 |
| 1 | 中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[J]. 中国水运, 2023(13): 29-33. |
| Ministry of Transport of the People’s Republic of China. Statistical bulletin on the development of transportation industry in 2022[J]. China Water Transport, 2023(13): 29-33. | |
| 2 | WANG Meng, LI Ping, NIAN Tengfei, et al. An overview of studies on the hazards, component analysis and suppression of fumes in asphalt and asphalt mixtures[J]. Construction and Building Materials, 2021, 289: 123185. |
| 3 | 谢辉端. 净味沥青及混合料环境影响评价方法研究[D]. 广州: 华南理工大学, 2022. |
| XIE Huiduan. Research on the environmental impact assessment method of fresh asphalt and mixes[D]. Guangzhou: South China University of Technology, 2022. | |
| 4 | 王亚萍. 温拌抑烟沥青制备及其混合料性能研究[D]. 天津: 河北工业大学, 2021. |
| WANG Yaping. Study on preparation and properties of warm-mixing smoky-suppression asphalt mixture[D]. Tianjin: Hebei University of Technology, 2021. | |
| 5 | 王俐栋. 环保型抑烟沥青及其混合料性能研究[D]. 重庆: 重庆交通大学, 2013. |
| WANG Lidong. Research on the performance of inhibit-smoke asphalt and asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
| 6 | 鲍金奇. 光催化材料对道路沥青烟气抑制作用的研究[D]. 抚顺: 辽宁石油化工大学, 2020. |
| BAO Jinqi. Study on the inhibition effect of photocatalytic materials on road asphalt fume[D]. Fushun: Liaoning Petrochemical University, 2020. | |
| 7 | CUI Peng, SCHITO Gabriella, CUI Qingbin. VOC emissions from asphalt pavement and health risks to construction workers[J]. Journal of Cleaner Production, 2020, 244: 118757. |
| 8 | 李婷婷. 沥青生产及铺路过程中VOCs的排放特征与控制对策研究[D]. 南宁: 广西大学, 2020. |
| LI Tingting. VOCs emission characteristics and control countermeasures in the asphalt production and asphalt pavement construction[D]. Nanning: Guangxi University, 2020. | |
| 9 | WANG Fusong, LI Na, HOFF Inge, et al. Characteristics of VOCs generated during production and construction of an asphalt pavement[J]. Transportation Research Part D: Transport and Environment, 2020, 87: 102517. |
| 10 | MO Shicong, WANG Yuhong, XIONG Feng, et al. Effects of asphalt source and mixing temperature on the generated asphalt fumes[J]. Journal of Hazardous Materials, 2019, 371: 342-351. |
| 11 | LI Na, JIANG Qi, WANG Fusong, et al. Emission behavior, environmental impact and priority-controlled pollutants assessment of volatile organic compounds (VOCs) during asphalt pavement construction based on laboratory experiment[J]. Journal of Hazardous Materials, 2020, 398: 122904. |
| 12 | 徐永丽, 杨松翰, 周吉森, 等. 基于重量法的沥青烟释放量影响因素研究[J]. 森林工程, 2022, 38(2): 119-124, 132. |
| XU Yongli, YANG Songhan, ZHOU Jisen, et al. Research on influencing factors of asphalt fume release based on quality method[J]. Forest Engineering, 2022, 38(2): 119-124, 132. | |
| 13 | 叶伟. 抑烟沥青抑烟性能定量评价的对比实验研究[J]. 公路工程, 2015, 40(2): 244-248. |
| YE Wei. Contrast experimental study on smoke suppression performance of smoke suppression asphalt by quantitative evaluation[J]. Highway Engineering, 2015, 40(2): 244-248. | |
| 14 | WANG Huan, LIU Quantao, WU Shaopeng, et al. Study of synergistic effect of diatomite and modified attapulgite on reducing asphalt volatile organic compounds emission[J]. Construction and Building Materials, 2023, 400: 132827. |
| 15 | PENG Xuya, LI Zhiyang. Study on regularity of fumes emitting from asphalt[J]. Intelligent Automation & Soft Computing, 2010, 16(5): 833-839. |
| 16 | XIAO Fei, ZHANG Hongzhang, ZHANG Xinyu, et al. Fume suppression agents for environmental-friendly asphalt pavement[J]. Intelligent Automation & Soft Computing, 2010, 16(5): 805-813. |
| 17 | 赖淏, 蔡相连, 高伟, 等. 阻燃抑烟沥青混合料研究进展[J]. 应用化工, 2023, 52(4): 1237-1242. |
| LAI Hao, CAI Xianglian, GAO Weiet al. Research progress in flame retardant and smoke suppressor asphalt mixtures[J]. Applied Chemical Industry, 2023, 52(4): 1237-1242. | |
| 18 | 中华人民共和国生态环境部. 固定污染源排气中沥青烟的测定 重量法: [S]. 北京: 中国环境科学出版社, 2004. |
| Ministry of Ecology and Environment of the People’s Republic of China. Stationary source emission—Determination of asphaltic smoke—Gravimetric method: [S]. Beijing: China Environmental Science Press, 2004. | |
| 19 | 李澳. 橡胶沥青净味机理及性能评价[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| LI Ao. Deodorization mechanism and performance evaluation of rubber asphalt[D]. Harbin: Harbin Institute of Technology, 2020. | |
| 20 | 孙吉书, 王亚萍, 王鹏飞, 等. 抑烟环保型沥青性能试验分析[J]. 硅酸盐通报, 2021, 40(7): 2428-2436. |
| SUN Jishu, WANG Yaping, WANG Pengfei, et al. Performance test analysis of smoke suppression environment-friendly asphalt[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2428-2436. | |
| 21 | 王鹏飞, 王亚萍, 孙吉书. 不同添加剂对沥青抑烟效果影响的试验研究[J]. 安全与环境学报, 2022, 22(2): 932-940. |
| WANG Pengfei, WANG Yaping, SUN Jishu. Experimental research on the influence of different additives on asphalt smoke suppression[J]. Journal of Safety and Environment, 2022, 22(2): 932-940. | |
| 22 | 李萍, 陈修乐, 张强, 等. 抑烟沥青复掺配比优化及抑烟效果评价[J]. 化工进展, 2024, 43(4): 1923-1933. |
| LI Ping, CHEN Xiule, ZHANG Qiang, et al. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. | |
| 23 | 陈修乐. 热拌抑烟沥青复配比优化及抑烟减排效果评价[D]. 兰州: 兰州理工大学, 2023. |
| CHEN Xiule. Optimization of compound ratio of hot mix fume-suppressing asphalt and its evaluation of fume suppression and emission reduction effect[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
| 24 | WANG Guangchen, YANG Xiaolong, YANG Deyu, et al. Effect of heating history on the emission of volatile organic compounds from asphalt materials[J]. Science of the Total Environment, 2023, 900: 165692. |
| 25 | 叶伟. 隧道抑烟沥青的研制与抑烟沥青混合料路用性能研究[D]. 重庆: 重庆交通大学, 2014. |
| YE Wei. Development of tunnel smoke suppression asphalt and study on road performance of smoke suppression asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2014. | |
| 26 | 乔志, 陈谦, 王朝辉, 等. 新型电气石复合材料及其沥青烟吸附性研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(8): 126-131, 149. |
| QIAO Zhi, CHEN Qian, WANG Chaohui, et al. New tourmaline composite and its asphalt smoke adsorption performance[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(8): 126-131, 149. | |
| 27 | 莫菊青. 紫外分光光度法测定空气中沥青烟[J]. 理化检验-化学分册, 2014, 50(4): 498-499. |
| MO Juqing. Determination of asphalt smoke in air by ultraviolet spectrophotometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(4): 498-499. | |
| 28 | 李晓虹. 沥青烟的紫外分光光度测定[J]. 煤炭技术, 2002, 21(9): 57. |
| LI Xiaohong. Ultraviolet spectrophotometry determination of bituminous smoke[J]. Coal Technology, 2002, 21(9): 57. | |
| 29 | 郑海琴. 紫外分光光度法测定水中石油沥青质的方法[J]. 化工设计通讯, 2021, 47(9): 102-104. |
| ZHENG Haiqin. Method of petroleum asphaltene in water by ultraviolet spectrophotometry[J]. Chemical Engineering Design Communications, 2021, 47(9): 102-104. | |
| 30 | SHARMA Ajit, LEE Byeong-Kyu. A novel nanocomposite of Ca(OH)2-incorporated zeolite as an additive to reduce atmospheric emissions of PM and VOCs during asphalt production[J]. Environmental Science: Nano, 2017, 4(3): 613-624. |
| 31 | SHARMA Ajit, LEE Byeong-Kyu. Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production[J]. Energy, 2017, 136: 142-150. |
| 32 | 陈硕秋. 隧道路面用环保型沥青抑烟效果与路用性能研究[D]. 南京: 南京林业大学, 2023. |
| CHEN Shuoqiu. Research on the smoke suppression effect and road performance of environmentally friendly asphalt used in tunnel pavement[D]. Nanjing: Nanjing Forestry University, 2023. | |
| 33 | LIANG Hehao, ZHAO Pu, XU Ruifeng, et al. Influence of smoke suppressant on the smoke inhibition effect and properties of different types of asphalt[J]. Frontiers in Materials, 2023, 10: 1205050. |
| 34 | ESPINOZA Javier, MEDINA Cristian, Alejandra CALABI-FLOODY, et al. Evaluation of reductions in fume emissions (VOCs and SVOCs) from warm mix asphalt incorporating natural zeolite and reclaimed asphalt pavement for sustainable pavements[J]. Sustainability, 2020, 12(22): 9546. |
| 35 | LIN Shiying, HUNG Wingtat, LENG Zhen. Air pollutant emissions and acoustic performance of hot mix asphalts[J]. Construction and Building Materials, 2016, 129: 1-10. |
| 36 | TANG Naipeng, ZHANG Zhiyu, DONG Ruikun, et al. Emission behavior of crumb rubber modified asphalt in the production process[J]. Journal of Cleaner Production, 2022, 340: 130850. |
| 37 | 龙永双, 吴少鹏, 肖月, 等. 基于PY-GC-MS的沥青VOCs挥发规律研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(1): 1-6. |
| LONG Yongshuang, WU Shaopeng, XIAO Yue, et al. Volatilization law research of asphalt VOCs based on PY-GC-MS[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(1): 1-6. | |
| 38 | 常郗文. 沥青VOCs的全组分定量分析及沸石的VOCs抑制研究[D]. 武汉: 武汉理工大学, 2020. |
| CHANG Xiwen. Research on quantitative analysis of asphalt VOCs and inhibitor contribution of zeolites[D]. Wuhan: Wuhan University of Technology, 2020. | |
| 39 | 董前坤. 热拌沥青路面全生命周期VOCs排放评估模型研究[D]. 武汉: 武汉理工大学, 2021. |
| DONG Qiankun. Research on VOCs emission evaluation model for whole life cycle of hot mix asphalt pavement[D]. Wuhan: Wuhan University of Technology, 2021. | |
| 40 | 张瑞. 沥青材料有机排放物逃逸行为与抑制研究[D]. 重庆: 重庆交通大学, 2023. |
| ZHANG Rui. Research on the emission behaviour and inhibition of organic emissions from asphalt materials[D]. Chongqing: Chongqing Jiaotong University, 2023. | |
| 41 | RHOMBERG Lorenz R, MAYFIELD David B, PRUEITT Robyn L, et al. A bounding quantitative cancer risk assessment for occupational exposures to asphalt emissions during road paving operations[J]. Critical Reviews in Toxicology, 2018, 48(9): 713-737. |
| 42 | RHOMBERG Lorenz R, MAYFIELD David B, GOODMAN Julie E, et al. Quantitative cancer risk assessment for occupational exposures to asphalt fumes during built-up roofing asphalt (BURA) operations[J]. Critical Reviews in Toxicology, 2015, 45(10): 873-918. |
| 43 | 鲍金奇, 王浩轩, 丛玉凤, 等. 道路沥青抑烟剂的研究进展[J]. 当代化工, 2020, 49(5): 988-992. |
| BAO Jinqi, WANG Haoxuan, CONG Yufeng, et al. Research progress of road asphalt smoke suppressant[J]. Contemporary Chemical Industry, 2020, 49(5): 988-992. | |
| 44 | 肖月, 常郗文, 董前坤, 等. 道路沥青材料VOCs的指纹组分及其定量分析[J]. 中国公路学报, 2020, 33(10): 276-287. |
| XIAO Yue, CHANG Xiwen, DONG Qiankun, et al. Fingerprint components and quantitative analysis of volatile organic compounds of asphalt materials[J]. China Journal of Highway and Transport, 2020, 33(10): 276-287. | |
| 45 | 丁佳瑛. 石油沥青烟气排放及抑制规律的研究[D]. 太原: 太原科技大学, 2022. |
| DING Jiaying. Research on fume emission and suppression law of petroleum asphalt[D]. Taiyuan: Taiyuan University of Science and Technology, 2022. | |
| 46 | LI Na, JIANG Qi, WANG Fusong, et al. Comparative assessment of asphalt volatile organic compounds emission from field to laboratory[J]. Journal of Cleaner Production, 2021, 278: 123479. |
| 47 | 张红华. 抑烟沥青的性能及抑烟效果评价研究[D]. 武汉: 武汉理工大学, 2014. |
| ZHANG Honghua. Study on performance and suppression effect of inhibitors modified asphalts[D]. Wuhan: Wuhan University of Technology, 2014. | |
| 48 | 杨锡武, 彭绪亚, 张兴雨, 等. 沥青烟气抑制剂及沥青混合料性能的试验[J]. 重庆大学学报, 2013, 36(12): 70-78. |
| YANG Xiwu, PENG Xuya, ZHANG Xingyu, et al. Experiments on the asphalt fume suppression agents and properties of asphalt concrete with fume suppression agent[J]. Journal of Chongqing University, 2013, 36(12): 70-78. | |
| 49 | 杨锡武, 彭绪亚, 钱诗林. 路面施工沥青烟气抑制剂及现场应用试验研究[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 122-127. |
| YANG Xiwu, PENG Xuya, QIAN Shilin. Experimental study on suppression agents of asphalt fume from pavement construction and its application[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 122-127. | |
| 50 | 中华人民共和国交通部. 公路沥青路面施工技术规范: [S]. 北京: 人民交通出版社, 2005. |
| Ministry of Transport of the People’s Republic of China. Technical specifications for construction of highway asphalt pavements: [S]. Beijing: China Communications Press, 2005. | |
| 51 | WANG Xinwen, ZHANG Weijun, Study on influencing factors of asphalt fume releasing and its hazards[J]. Applied Mechanics and Materials, 2012, 209/210/211: 1257-1260. |
| 52 | 曹嘉慧, 申峻, 王玉高, 等. 共混沥青烟中16种多环芳烃的释放规律[J]. 煤炭转化, 2019, 42(5): 88-96. |
| CAO Jiahui, SHEN Jun, WANG Yugao, et al. Release of 16 kinds of polycyclic aromatic hydrocarbons in blended asphalt fume[J]. Coal Conversion, 2019, 42(5): 88-96. | |
| 53 | CUI P Q, WU S P, XIAO Y, et al. Experimental study on the reduction of fumes emissions in asphalt by different additives[J]. Materials Research Innovations, 2015, 19(S1): 158-161. |
| 54 | 肖月, 常郗文, 张晓珊, 等. 氢氧化钙沸石的设计及其对沥青VOCs的抑制[J]. 长安大学学报(自然科学版), 2019, 39(4): 17-26. |
| XIAO Yue, CHANG Xiwen, ZHANG Xiaoshan, et al. Design of Ca(OH)2-incorporated zeolite and its inhibition effect on bitumen VOCs[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(4): 17-26. | |
| 55 | TEKIN Burak, Yıldıray TOPCU. Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance[J]. Journal of Energy Storage, 2024, 77: 109879. |
| 56 | LONG Yongshuang, WU Shaopeng, XIAO Yue, et al. VOCs reduction and inhibition mechanisms of using active carbon filler in bituminous materials[J]. Journal of Cleaner Production, 2018, 181: 784-793. |
| 57 | XIAO Y, WAN M, JENKINS K J, et al. Using activated carbon to reduce the volatile organic compounds from bituminous materials[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 04017166. |
| 58 | 侯梅芳, 崔杏雨, 李瑞丰. 沸石分子筛在气体吸附分离方面的应用研究[J]. 太原理工大学学报, 2001, 32(2): 135-139, 144. |
| HOU Meifang, CUI Xingyu, LI Ruifeng. Application of zeolite molecular sieves adsorbents in gas separation[J]. Journal of Taiyuan University of Technology, 2001, 32(2): 135-139, 144. | |
| 59 | 孙仕伟, 乔云雁, 杨晓菲, 等. 不同抑烟剂对沥青混合料动态性能的影响及抑烟效果研究[J]. 新型建筑材料, 2017, 44(1): 25-29. |
| SUN Shiwei, QIAO Yunyan, YANG Xiaofei, et al. Effect of different smoke suppression agent on the dynamic performance of asphalt mixture and the effect of smoke suppression[J]. New Building Materials, 2017, 44(1): 25-29. | |
| 60 | 黄刚, 何兆益, 黄涛. 高温状态沥青烟释放室内测定与影响因素分析[J]. 建筑材料学报, 2015, 18(2): 322-327. |
| HUANG Gang, HE Zhaoyi, HUANG Tao. Laboratory measurement and analysis of effect factor on asphalt fume under the elevated temperature[J]. Journal of Building Materials, 2015, 18(2): 322-327. | |
| 61 | 黄刚. 高温条件下抑烟改性沥青开发及混合料性能研究[D]. 重庆: 重庆交通大学, 2013. |
| HUANG Gang. Exploitation of modified asphalt of fume suppression and study on performance of its mixture under the elevated temperature[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
| 62 | CAO Zhilong, GONG Guanyu, LIU Yu, et al. Effects of different inhibitors on emission characteristics, environmental impact and health risk of volatile organic compounds from asphalt binder[J]. Journal of Cleaner Production, 2023, 428: 139427. |
| 63 | HUANG Gang, HE Zhaoyi, HUANG Yangcheng, et al. Mechanism of fume suppression and performance on asphalt of expanded graphite for pavement under high temperature condition[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(6): 1229-1236. |
| 64 | 黄刚, 何兆益, 周超, 等. 膨胀石墨抑制沥青烟机理与抑烟沥青混合料动态性能[J]. 中国公路学报, 2015, 28(10): 1-10. |
| HUANG Gang, HE Zhaoyi, ZHOU Chao, et al. Suppression mechanism of expanded graphite for asphalt fume and dynamic performance of asphalt mixture of fume suppression[J]. China Journal of Highway and Transport, 2015, 28(10): 1-10. | |
| 65 | XU Song, YU Jianying, WU Weifei, et al. Synthesis and characterization of layered double hydroxides intercalated by UV absorbents and their application in improving UV aging resistance of bitumen[J]. Applied Clay Science, 2015, 114: 112-119. |
| 66 | LIU Xing, WU Shaopeng, LIU Gang, et al. Effect of ultraviolet aging on rheology and chemistry of LDH-modified bitumen[J]. Materials, 2015, 8(8): 5238-5249. |
| 67 | CUI Peiqiang, WU Shaopeng, XIAO Yue, et al. Inhibiting effect of layered double hydroxides on the emissions of volatile organic compounds from bituminous materials[J]. Journal of Cleaner Production, 2015, 108: 987-991. |
| 68 | CUI P Q, ZHOU H G, LI C, et al. Characteristics of using layered double hydroxides to reduce the VOCs from bituminous materials[J]. Construction and Building Materials, 2016, 123: 69-77. |
| 69 | CUI Peiqiang, ZHANG Honghua, WU Shaopeng. Influence of high-temperature volatilization on performance of bituminous binder[J]. Key Engineering Materials, 2014, 599: 164-167. |
| 70 | ZHU Kai, WANG Yunhe, TANG Daquan, et al. Flame-retardant mechanism of layered double hydroxides in asphalt binder[J]. Materials, 2019, 12(5): 801. |
| 71 | 张新雨. 低烟气环保路用沥青及其混合料性能试验研究[D]. 重庆: 重庆交通大学, 2011. |
| ZHANG Xinyu. Green road with low flue gas asphalt and mixture experimental research[D]. Chongqing: Chongqing Jiaotong University, 2011. | |
| 72 | 王朝辉, 李彦伟, 葛娟, 等. Tourmaline改性沥青及其混合料热拌减排性能[J]. 中国公路学报, 2014, 27(11): 17-24. |
| WANG Chaohui, LI Yanwei, GE Juan, et al. Emission reduction effect of tourmaline modified asphalt and its mixtures under condition of hot-mix[J]. China Journal of Highway and Transport, 2014, 27(11): 17-24. | |
| 73 | WANG Chaohui, WANG Peng, LI Yanwei, et al. Laboratory investigation of dynamic rheological properties of tourmaline modified bitumen[J]. Construction and Building Materials, 2015, 80: 195-199. |
| 74 | WANG Chaohui, WANG Menghao, CHEN Qian, et al. Basic performance and asphalt smoke absorption effect of environment-friendly asphalt to improve pavement construction environment[J]. Journal of Cleaner Production, 2022, 333: 130142. |
| 75 | 常郗文, 龙永双, 仪明伟, 等. 道路沥青挥发性有机化合物减排材料的研究进展[J]. 材料导报, 2023, 37(20): 247-262. |
| CHANG Xiwen, LONG Yongshuang, YI Mingwei, et al. Research progress of emission reduction materials for volatile organic compounds reduction in asphalt pavement construction[J]. Materials Reports, 2023, 37(20): 247-262. | |
| 76 | SUN Guoqiang, LI Bin, SUN Daquan, et al. Chemo-rheological and morphology evolution of polymer modified bitumens under thermal oxidative and all-weather aging[J]. Fuel, 2021, 285: 118989. |
| 77 | SUN Guoqiang, NING Weidong, JIANG Xulai, et al. A comprehensive review on asphalt fume suppression and energy saving technologies in asphalt pavement industry[J]. Science of the Total Environment, 2024, 913: 169726. |
| 78 | ZHOU Bochao, GONG Guanyu, LIU Yu, et al. Technical and environmental performance assessment of VOCs inhibited asphalt binders and mixtures[J]. Transportation Research Part D: Transport and Environment, 2023, 124: 103931. |
| 79 | PENG Xuya, QIAN Shilin, XIAO Fei, et al. The experimental study on the road asphalt fumes suppressive effect of SBS and nano calcium carbonate[J]. Advanced Materials Research, 2011, 233/234/235: 507-511. |
| 80 | 郭寅川, 王涵, 申爱琴, 等. ATH/OMMT复合改性沥青阻燃抑烟性能与机理分析[J]. 硅酸盐通报, 2020, 39(6): 1989-1997. |
| GUO Yinchuan, WANG Han, SHEN Aiqin, et al. Analysis of flame-retarding and smoke suppressing performance and mechanism of ATH/OMMT modified asphalt[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1989-1997. | |
| 81 | 孙吉书, 李文霞, 李宁利, 等. 可膨胀石墨/氢氧化铝复合抑烟沥青制备及机理分析[J]. 大连理工大学学报, 2022, 62(4): 386-393. |
| SUN Jishu, LI Wenxia, LI Ningli, et al. Preparation and mechanism analysis of expandable graphite/aluminum hydroxide composite smoke suppression asphalt[J]. Journal of Dalian University of Technology, 2022, 62(4): 386-393. | |
| 82 | GUO Tengteng, FU Hao, WANG Chaohui, et al. Road performance and emission reduction effect of graphene/tourmaline-composite-modified asphalt[J]. Sustainability, 2021, 13(16): 8932. |
| 83 | GROSSO Mario, CERNUSCHI Stefano, GIUGLIANO Michele, et al. Environmental release and mass flux partitioning of PCDD/Fs during normal and transient operation of full scale waste to energy plants[J]. Chemosphere, 2007, 67(9): S118-S124. |
| 84 | 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(S1): 209-212. |
| LI Xuyang, SUO Zhi, LUO Liang. Quantitative analysis on energy saving and emission reduction of warm-mix asphalt mixture in production stage[J]. Materials Reports, 2020, 34(S1): 209-212. | |
| 85 | 程玲, 闫国杰, 陈德珍, 等. 温拌沥青混合料摊铺节能减排效果的定量化研究[J]. 环境工程学报, 2010, 4(9): 2151-2155. |
| CHENG Ling, YAN Guojie, CHEN Dezhen, et al. Quantitative investigation on energy conservation and emission reduction related to warm mix asphalt (WMA)[J]. Chinese Journal of Environmental Engineering, 2010, 4(9): 2151-2155. | |
| 86 | 邱延峻, 罗浩原, 张家康, 等. 热拌与温拌沥青路面生产施工排放物对比[J]. 长安大学学报(自然科学版), 2020, 40(1): 30-39. |
| QIU Yanjun, LUO Haoyuan, ZHANG Jiakang, et al. Comparative of emissions from production and construction of hot mix and warm mix asphalt pavement[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 30-39. | |
| 87 | 宋云连, 丁楠, 刘恒, 等. 温拌剂种类及掺量对不同沥青流变性能的影响[J]. 复合材料学报, 2018, 35(2): 451-459. |
| SONG Yunlian, DING Nan, LIU Heng, et al. Effect of warm mix agents type and dosage on rheological property of different asphalt[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 451-459. | |
| 88 | 周国庆. 有机类温拌橡胶沥青流变改性机理研究[J]. 公路工程, 2014, 39(6): 330-336. |
| ZHOU Guoqing. Investigation on the rheological modification mechanism of organic wax additives of crumb rubber modified asphalt[J]. Highway Engineering, 2014, 39(6): 330-336. | |
| 89 | 冯娟. 温拌沥青胶结料降黏机理研究[D]. 乌鲁木齐: 新疆大学, 2013. |
| FENG Juan. Study on the mechanism of warm mix asphalt binder viscosity reduction[D]. Urumqi: Xinjiang University, 2013. | |
| 90 | 王文奇, 邱延峻, 郭玉金, 等. 有机降黏型温拌沥青添加剂发展现状及展望[J]. 化工新型材料, 2017, 45(4): 210-212. |
| WANG Wenqi, QIU Yanjun, GUO Yujin, et al. Present situation and prospect of organic reduced sticky additive for warm mix asphalt[J]. New Chemical Materials, 2017, 45(4): 210-212. | |
| 91 | 季节, 马童, 任万艳, 等. 温拌橡胶沥青降黏作用机理研究[J]. 中外公路, 2022, 42(6): 168-173. |
| JI Jie, MA Tong, REN Wanyan, et al. Mechanism of rubber asphalts viscosity reduction by warm additives[J]. Journal of China & Foreign Highway, 2022, 42(6): 168-173. | |
| 92 | CAPITÃO S D, PICADO-SANTOS L G, MARTINHO F. Pavement engineering materials: Review on the use of warm-mix asphalt[J]. Construction and Building Materials, 2012, 36: 1016-1024. |
| 93 | 梁波, 张海涛, 梁缘, 等. 温拌沥青技术研究综述[J]. 交通运输工程学报, 2023, 23(2): 24-46. |
| LIANG Bo, ZHANG Haitao, LIANG Yuan, et al. Review on warm mixing asphalt technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 24-46. | |
| 94 | 司特, 刘又诚, 汤雄, 等. 表面活性类温拌剂对SBS改性沥青性能的影响研究[J]. 西部交通科技, 2023(3): 70-73. |
| SI Te, LIU Youcheng, TANG Xiong, et al. Study on the influence of surface active warm mix agent on the properties of SBS modified asphalt[J]. Western China Communications Science & Technology, 2023(3): 70-73. | |
| 95 | 董昭, 徐书东, 柳久伟, 等. 不同类型温拌剂对沥青性能影响[J]. 山东大学学报(工学版), 2023, 53(1): 18-24. |
| DONG Zhao, XU Shudong, LIU Jiuwei, et al. Effect of different types of warm mix agents on asphalt properties[J]. Journal of Shandong University (Engineering Science), 2023, 53(1): 18-24. | |
| 96 | 王维一, 张家文, 陈子钰, 等. 温拌沥青混合料的制备技术及评价[J]. 上海公路, 2017(4): 69-72, 6. |
| WANG Weiyi, ZHANG Jiawen, CHEN Ziyu, et al. Preparation technology and evaluation of warm mix asphalt[J]. Shanghai Highways, 2017(4): 69-72, 6. | |
| 97 | 张童童, 高阳, 贺显威, 等. 基于LCA的温拌再生沥青路面建设期节能减排效果研究[J]. 公路, 2019, 64(4): 287-293. |
| ZHANG Tongtong, GAO Yang, HE Xianwei, et al. Research on energy saving and emission reduction of the warm-mix asphalt recycling pavement during construction period based on life cycle assessment[J]. Highway, 2019, 64(4): 287-293. | |
| 98 | 杨凯凯. 地聚合物沥青混合料温拌剂的制备与性能研究[D]. 沈阳: 沈阳建筑大学, 2020. |
| YANG Kaikai. Preparation and performance of warm mix asphalt additives based on geopolymer[D]. Shenyang: Shenyang Jianzhu University, 2020. | |
| 99 | SUKHIJA Mayank, SABOO Nikhil. A comprehensive review of warm mix asphalt mixtures-laboratory to field[J]. Construction and Building Materials, 2021, 274: 121781. |
| 100 | 杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. |
| YANG Xiaolong, SHEN Aiqin, JIANG Yixin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. | |
| 101 | 赵毅, 田于锋, 郝增恒, 等. 隧道沥青路面阻燃抑烟技术及机理研究进展[J]. 应用化工, 2021, 50(5): 1430-1438. |
| ZHAO Yi, TIAN Yufeng, HAO Zengheng, et al. Research progress of flame retardant and smoke suppression technology and mechanism of tunnel asphalt pavement[J]. Applied Chemical Industry, 2021, 50(5): 1430-1438. | |
| 102 | 董芃伯. 聚磷酸铵阻燃沥青性能研究[D]. 重庆: 重庆交通大学, 2012. |
| DONG Pengbo. The research on performace of ammonium polyphosphate flame retardant asphalt[D]. Chongqing: Chongqing Jiaotong University, 2012. | |
| 103 | 何立平, 申爱琴, 梁军林, 等. 阻燃沥青及沥青混合料的阻燃性能及路用性能[J]. 公路交通科技, 2013, 30(12): 15-22. |
| HE Liping, SHEN Aiqin, LIANG Junlin, et al. Flame retardant and pavement performance of flame retardant asphalt and asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2013, 30(12): 15-22. | |
| 104 | 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9): 1-8. |
| DANG Li, Zhihui LYU. Research progress on inorganic flame retardants[J]. China Plastics, 2018, 32(9): 1-8. | |
| 105 | 何兆益, 谭洋伟, 李家琪, 等. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 72-79. |
| HE Zhaoyi, TAN Yangwei, LI Jiaqi, et al. Study on the performance and mechanism of asphalt synergistically modified by halloysite nanotubes and conventional flame retardant[J]. Materials Reports, 2022, 36(2): 72-79. | |
| 106 | 申爱琴, 苏宇轩, 杨小龙, 等. ATH/MMT阻燃剂对沥青混合料性能的影响[J]. 长安大学学报(自然科学版), 2020, 40(2): 1-9. |
| SHEN Aiqin, SU Yuxuan, YANG Xiaolong, et al. Influencing of compounding flame retardants with ATH/MMT on performance of asphalt mixture[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(2): 1-9. |
| [1] | ZHANG Dongxu, YAO Qiang, HEI Shunan, LI Weidong, LIU Cheng, LI Zhijun, SONG Lechun, HAN Zhaoming. Compatibility and performance analysis of waste plastic modified asphalts: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1651-1665. |
| [2] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [3] | DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430. |
| [4] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
| [5] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| [6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
| [7] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
| [8] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
| [9] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
| [10] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
| [11] | LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. |
| [12] | ZHANG Xincheng, HE Lin, SUI Hong, LI Xingang. Demulsification process and enhancement by viscosity reduction for water-in-heavy oil emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3534-3544. |
| [13] | LIU Jing, ZHENG Xinguo, LI Tiejun, WANG Caiping, ZHAO Yanxu, LI Ying, LOU Liangwei, SHEN Wei. Mechanical properties and micromorphology of redispersible emulsified asphalt powder modified cement mortar [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2015-2021. |
| [14] | ZHANG Xueying, MA Jun, HE Lin, SUI Hong, LI Xingang. Molecular structure of interfacially active asphaltene in asphalt rock and its adsorption characteristics on mineral surface [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 628-636. |
| [15] | DING Jiaying, XUE Yongbing, LIU Zhenmin, LI Tao, CHU Yifan. Research progress of environmentally asphalt [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 226-231. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |