Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6466-6476.DOI: 10.16085/j.issn.1000-6613.2024-1535
• Materials science and technology • Previous Articles
YANG Chengcheng(
), LIU Li(
), LIU Zhaohui, YANG Da, PAN Houxuan
Received:2024-09-20
Revised:2024-12-02
Online:2025-12-08
Published:2025-11-25
Contact:
LIU Li
通讯作者:
柳力
作者简介:杨程程(1994—),女,博士,研究方向为道路新材料。E-mail: 782592632@qq.com。
基金资助:CLC Number:
YANG Chengcheng, LIU Li, LIU Zhaohui, YANG Da, PAN Houxuan. Interfacial cohesive performance of nano-SiO2 grafted basalt fiber with asphalt[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6466-6476.
杨程程, 柳力, 刘朝晖, 杨达, 潘厚璇. 纳米SiO2接枝玄武岩纤维与沥青界面黏结性能[J]. 化工进展, 2025, 44(11): 6466-6476.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1535
| 沥青组分 | 组成/分子式 | 分子数量 | 分子结构 |
|---|---|---|---|
| 饱和分 | 异十三烷/C30H62 | 4 | ![]() |
| 藿烷/C35H62 | 6 | ![]() | |
| 胶质 | 喹啉藿/C40H59N | 2 | ![]() |
| 硫代物/C40H60S | 2 | ![]() | |
| 苯并噻吩/C18H10S2 | 9 | ![]() | |
| 吡啶藿/C36H57N | 2 | ![]() | |
| 三甲基苯烷/C29H50O | 2 | ![]() | |
| 芳香分 | 全氢菲萘(PHPN)/C35H44 | 13 | ![]() |
| 二辛基环乙烷萘(DOCHN)/C30H46 | 16 | ![]() | |
| 沥青质 | 苯酚/C42H54O | 3 | ![]() |
| 吡咯/C66H81N | 2 | ![]() | |
| 噻吩/C51H62S | 2 | ![]() |
| 沥青组分 | 组成/分子式 | 分子数量 | 分子结构 |
|---|---|---|---|
| 饱和分 | 异十三烷/C30H62 | 4 | ![]() |
| 藿烷/C35H62 | 6 | ![]() | |
| 胶质 | 喹啉藿/C40H59N | 2 | ![]() |
| 硫代物/C40H60S | 2 | ![]() | |
| 苯并噻吩/C18H10S2 | 9 | ![]() | |
| 吡啶藿/C36H57N | 2 | ![]() | |
| 三甲基苯烷/C29H50O | 2 | ![]() | |
| 芳香分 | 全氢菲萘(PHPN)/C35H44 | 13 | ![]() |
| 二辛基环乙烷萘(DOCHN)/C30H46 | 16 | ![]() | |
| 沥青质 | 苯酚/C42H54O | 3 | ![]() |
| 吡咯/C66H81N | 2 | ![]() | |
| 噻吩/C51H62S | 2 | ![]() |
| 性能参数 | 模拟数值 | 试验参考值 |
|---|---|---|
| 密度/g‧cm-3 | 0.989 | 0.997~1.020[ |
| 内聚能密度/108J‧m-3 | 3.014 | 3.320[ |
| 溶解度参数/(J‧cm-3)1/2 | 17.360 | 15.300~23.000[ |
| 玻璃化转变温度/K | 298.129 | 298.150~358.150[ |
| 性能参数 | 模拟数值 | 试验参考值 |
|---|---|---|
| 密度/g‧cm-3 | 0.989 | 0.997~1.020[ |
| 内聚能密度/108J‧m-3 | 3.014 | 3.320[ |
| 溶解度参数/(J‧cm-3)1/2 | 17.360 | 15.300~23.000[ |
| 玻璃化转变温度/K | 298.129 | 298.150~358.150[ |
| 纤维类型 | 温度/K | 界面能/kcal·mol-1 | 静电能/kcal·mol-1 | 范德华能/kcal·mol-1 |
|---|---|---|---|---|
| 原样BF | 298 | -272.44 | -3.68 | -201.80 |
| 323 | -261.44 | -2.64 | -190.70 | |
| 353 | -235.48 | -1.86 | -165.53 | |
| 438 | -216.39 | -0.90 | -147.39 | |
| SiO2-BF | 298 | -359.89 | -10.11 | -277.73 |
| 323 | -350.30 | -9.71 | -268.55 | |
| 353 | -300.77 | -8.04 | -220.69 | |
| 438 | -231.21 | -1.37 | -157.65 |
| 纤维类型 | 温度/K | 界面能/kcal·mol-1 | 静电能/kcal·mol-1 | 范德华能/kcal·mol-1 |
|---|---|---|---|---|
| 原样BF | 298 | -272.44 | -3.68 | -201.80 |
| 323 | -261.44 | -2.64 | -190.70 | |
| 353 | -235.48 | -1.86 | -165.53 | |
| 438 | -216.39 | -0.90 | -147.39 | |
| SiO2-BF | 298 | -359.89 | -10.11 | -277.73 |
| 323 | -350.30 | -9.71 | -268.55 | |
| 353 | -300.77 | -8.04 | -220.69 | |
| 438 | -231.21 | -1.37 | -157.65 |
| 纤维类型 | 温度/K | 界面能/kcal·mol-1 | |||
|---|---|---|---|---|---|
| 饱和分 | 芳香分 | 胶质 | 沥青质 | ||
| 原样BF | 298 | -28.84 | -96.95 | -72.73 | -73.92 |
| 323 | -26.86 | -94.08 | -70.37 | -70.14 | |
| 353 | -23.45 | -82.24 | -62.43 | -67.38 | |
| 438 | -18.90 | -76.65 | -59.51 | -61.33 | |
| SiO2-BF | 298 | -36.56 | -147.67 | -88.89 | -86.76 |
| 323 | -33.46 | -145.69 | -86.10 | -85.06 | |
| 353 | -28.42 | -120.10 | -76.77 | -75.49 | |
| 438 | -18.38 | -103.24 | -55.53 | -54.05 | |
| 纤维类型 | 温度/K | 界面能/kcal·mol-1 | |||
|---|---|---|---|---|---|
| 饱和分 | 芳香分 | 胶质 | 沥青质 | ||
| 原样BF | 298 | -28.84 | -96.95 | -72.73 | -73.92 |
| 323 | -26.86 | -94.08 | -70.37 | -70.14 | |
| 353 | -23.45 | -82.24 | -62.43 | -67.38 | |
| 438 | -18.90 | -76.65 | -59.51 | -61.33 | |
| SiO2-BF | 298 | -36.56 | -147.67 | -88.89 | -86.76 |
| 323 | -33.46 | -145.69 | -86.10 | -85.06 | |
| 353 | -28.42 | -120.10 | -76.77 | -75.49 | |
| 438 | -18.38 | -103.24 | -55.53 | -54.05 | |
| 纤维类型 | 温度/K | 扩散系数/nm2·ps-1 | |||
|---|---|---|---|---|---|
| 饱和分 | 芳香分 | 胶质 | 沥青质 | ||
| 原样BF | 298 | 0.0006825 | 0.0006496 | 0.0006213 | 0.0004267 |
| 323 | 0.0009145 | 0.0008872 | 0.0011040 | 0.0007341 | |
| 353 | 0.0013510 | 0.0011470 | 0.0011520 | 0.0008098 | |
| 438 | 0.0036930 | 0.0012450 | 0.0018130 | 0.0009580 | |
| SiO2-BF | 298 | 0.0003159 | 0.0003121 | 0.0003625 | 0.0001793 |
| 323 | 0.0004532 | 0.0003318 | 0.0004353 | 0.0001962 | |
| 353 | 0.0005141 | 0.0003390 | 0.0004418 | 0.0002748 | |
| 438 | 0.0031160 | 0.0011780 | 0.0011210 | 0.0006250 | |
| 纤维类型 | 温度/K | 扩散系数/nm2·ps-1 | |||
|---|---|---|---|---|---|
| 饱和分 | 芳香分 | 胶质 | 沥青质 | ||
| 原样BF | 298 | 0.0006825 | 0.0006496 | 0.0006213 | 0.0004267 |
| 323 | 0.0009145 | 0.0008872 | 0.0011040 | 0.0007341 | |
| 353 | 0.0013510 | 0.0011470 | 0.0011520 | 0.0008098 | |
| 438 | 0.0036930 | 0.0012450 | 0.0018130 | 0.0009580 | |
| SiO2-BF | 298 | 0.0003159 | 0.0003121 | 0.0003625 | 0.0001793 |
| 323 | 0.0004532 | 0.0003318 | 0.0004353 | 0.0001962 | |
| 353 | 0.0005141 | 0.0003390 | 0.0004418 | 0.0002748 | |
| 438 | 0.0031160 | 0.0011780 | 0.0011210 | 0.0006250 | |
| [1] | WU Wangjie, FU Zhiyu, JIANG Wei. Developing a novel sustainable and durable self-luminous pavement material with solar energy absorption capability[J]. Construction and Building Materials, 2024, 445: 137934. |
| [2] | WU Jie, ZHAO Zifeng, JIANG Changshan, et al. Recent development and application of natural fiber in asphalt pavement[J]. Journal of Cleaner Production, 2024, 449: 141832. |
| [3] | ZHANG Huzhu, ZHAO Jinxuan, YANG Wenjia, et al. Ultrasound-based freeze-thaw damage evaluation of graphene-basalt fiber asphalt mixtures[J]. Materials and Structures, 2024, 57(4): 73. |
| [4] | 康爱红, 王卡, 孔贺誉, 等. 不同直径玄武岩纤维对沥青混合料性能影响[J]. 扬州大学学报(自然科学版), 2024, 27(1): 74-78. |
| KANG Aihong, WANG Ka, KONG Heyu, et al. Effect of basalt fiber with different diameter on asphalt mixture performance[J]. Journal of Yangzhou University (Natural Science Edition), 2024, 27(1): 74-78. | |
| [5] | 吴林松, 王旭洋, 许泽宁, 等. 玄武岩纤维沥青胶浆抗剪性能研究[J]. 公路交通科技, 2023, 40(6): 17-24. |
| WU Linsong, WANG Xuyang, XU Zening, et al. Study on shear properties of asphalt mortar with basalt fiber[J]. Journal of Highway and Transportation Research and Development, 2023, 40(6): 17-24. | |
| [6] | ZHANG Yu, ZHANG Yao, LI Bo, et al. Evaluation of cracking resistance of SMA-13 hot recycling asphalt mixtures reinforced by basalt fiber[J]. Materials, 2024, 17(8): 1762. |
| [7] | SUN Zhiwei, KOU Changjiang, LU Yu, et al. A study of the bond strength and mechanism between basalt fibers and asphalt binders[J]. Applied Sciences, 2024, 14(6): 2471. |
| [8] | LOU Keke, XIAO Peng, Ghim Ping ONG, et al. Micromechanical behavior of single fiber-asphalt mastic interface: Experimental studies by self-designed innovative pullout test[J]. Construction and Building Materials, 2024, 414: 134873. |
| [9] | LIU Yanyan, ZHANG Zeyu, LIU Xue, et al. Self-sensing stress-absorption layer with carbon nanotubes grafted onto basalt fibers[J]. Journal of Materials in Civil Engineering, 2024, 36(2): 16077. |
| [10] | TAN Yangwei, XU Jinwei, XIE Jianguang, et al. Properties and mechanisms of mussel-inspired biomimetic treatment of basalt fiber modified asphalt[J]. Construction and Building Materials, 2024, 435: 136872. |
| [11] | YANG Chengcheng, LIU Li, LIU Zhaohui, et al. Study on the performance of ATP grafting basalt fiber based on the plant root bionic idea and its adsorption characteristics with asphalt[J]. Materials and Structures, 2024, 57(7): 157. |
| [12] | SANG Lin, ZHENG Guojun, HOU Wenbin, et al. Crystallization and mechanical properties of basalt fiber-reinforced polypropylene composites with different elastomers[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(3): 1531-1543. |
| [13] | 柳力, 刘磊鑫, 刘朝晖, 等. 碳纳米管接枝玄武岩纤维沥青胶浆的电愈合行为及机制[J]. 复合材料学报, 2024, 41(12): 6612-6627. |
| LIU Li, LIU Leixin, LIU Zhaohui, et al. Electrically healing behavior and mechanism of asphalt mortar with carbon nanotube grafted basalt fibers[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6612-6627. | |
| [14] | WU Qing, YAO Renjie, DENG Hao, et al. Synergistic interactions of citric acid grafted β-cyclodextrin and polyethyleneimine for improving interfacial properties of basalt fiber/epoxy composites[J]. Composites Science and Technology, 2024, 251: 110575. |
| [15] | XIA Ruoyun, ZHANG Na, ZHANG Youpeng, et al. Effects of halloysite-decorated basalt fiber on mechanical properties and microstructure of iron tailings-based cementitious mortar[J]. Construction and Building Materials, 2024, 417: 135300. |
| [16] | XU Bingbing, ZHANG Qiuhui. Preparation and properties of hydrophobically modified nano-SiO2 with hexadecyltrimethoxysilane[J]. ACS Omega, 2021, 6(14): 9764-9770. |
| [17] | LONG Zhengwu, ZHOU Sijia, JIANG Shaoting, et al. Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation[J]. Journal of Molecular Modeling, 2021, 27(3): 81. |
| [18] | ZHENG Xuan, ZHAO Yanping, ZHANG Chi, et al. Thermal performance and mechanical properties of phase change cement paste with nano-SiO2 grafted straw-paraffin[J]. Construction and Building Materials, 2024, 419: 135551. |
| [19] | QIN Wenzhen, VAUTARD Frederic, ASKELAND Per, et al. Modifying the carbon fiber-epoxy matrix interphase with silicon dioxide nanoparticles[J]. RSC Advances, 2015, 5(4): 2457-2465. |
| [20] | POPOV Maxim V, ZAZHIGALOV Sergey V, LARINA Tatyana V, et al. Glass fiber supports modified by layers of silica and carbon nanofibers[J]. Catalysis for Sustainable Energy, 2017, 4(1): 1-6. |
| [21] | CHENG Heng, SUN Hao, ZHANG Zuhua, et al. Effect of modified PE fiber grafted with nano-SiO2 on the tensile properties of high-strength engineering cementitious composites[J]. Construction and Building Materials, 2024, 420: 135618. |
| [22] | LIU Jinliang, ZHAO Wenjie, LI Linfei. Effects of nano-SiO2 grafting on improving the interfacial and mechanical properties of concrete with rice straw fibers[J]. Construction and Building Materials, 2023, 398: 132516. |
| [23] | 杨程程, 柳力, 刘朝晖, 等. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青黏附特性研究[J]. 材料导报, 2024, 38(6): 280-286. |
| YANG Chengcheng, LIU Li, LIU Zhaohui, et al. Study on the adhesion characteristics of silane coupling agent modified basalt fiber to asphalt based on molecular dynamics[J]. Materials Reports, 2024, 38(6): 280-286. | |
| [24] | WANG Fuyu, ZOU Gaoyuan, XU Li, et al. Investigating the impact of calcium sulfate whisker on the microscopic properties of basalt fiber-reinforced asphalt using molecular dynamics simulation[J]. Construction and Building Materials, 2024, 421: 135643. |
| [25] | WU Wangjie, JIANG Wei, YUAN Dongdong, et al. A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors[J]. Construction and Building Materials, 2021, 299: 124279. |
| [26] | YANG Chengcheng, LIU Li, LIU Zhaohui, et al. Study on the mechanism of bond strength generation and debonding failure between basalt fiber and asphalt based on molecular dynamics[J]. Case Studies in Construction Materials, 2023, 19: e02493. |
| [27] | XU Meng, YI Junyan, FENG Decheng, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12393-12403. |
| [28] | CHEN Wuxing, CHEN Shuang, ZHENG Chuanfeng. Analysis of micromechanical properties of algae bio-based bio-asphalt-mineral interface based on molecular simulation technology[J]. Construction and Building Materials, 2021, 306: 124888. |
| [29] | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
| [30] | LESUEUR Didier. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 42-82. |
| [31] | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
| [32] | ENGINEERS Ioc. The Shell bitumen handbook 6th edition[J]. Quarry Management, 2015, 42(6): 34. |
| [33] | LIAO Meijie, GAO Yingli, XIE Yutong, et al. Investigation on the anti-aging properties enhancement mechanism of graphene on RA based on size effect[J]. Case Studies in Construction Materials, 2022, 17: e01634. |
| [1] | TIAN Xiaoge, LI Guangyao, GAO Kai, WU Qinghao, HUANG Sidan, XIE Zhen. Interaction behavior between waste rubber powder and asphalt-aggregate interface in dry process [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5174-5183. |
| [2] | LUO Pei, LI Ping, YANG Wenfeng, LI Wei. Evaluation of the degree of aging of asphalt based on grey relation analysis and factor analysis [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5108-5119. |
| [3] | YUE Lei, LI Peilong, DING Zhan, XIA Lei, AN Linyu. Research progress on characterization methods of diffusion behavior of asphalt rejuvenators [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2068-2080. |
| [4] | ZHANG Dongxu, YAO Qiang, HEI Shunan, LI Weidong, LIU Cheng, LI Zhijun, SONG Lechun, HAN Zhaoming. Compatibility and performance analysis of waste plastic modified asphalts: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1651-1665. |
| [5] | LIU Yanyan, ZHOU Shuai, HE Ziqi, LYU Yi. Research progress on test methods and inhibition strategies of asphalt fumes [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1632-1650. |
| [6] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [7] | DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430. |
| [8] | XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449. |
| [9] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
| [10] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
| [11] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
| [12] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
| [13] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
| [14] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
| [15] | LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |