Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5142-5156.DOI: 10.16085/j.issn.1000-6613.2023-1476
• Materials science and technology • Previous Articles
LOU Gaobo1,2(), YAO Xiaoling3, NI Jingwen1, FU Shenyuan1,2, LIU Lina1,2()
Received:
2023-08-23
Revised:
2023-10-12
Online:
2024-09-30
Published:
2024-09-15
Contact:
LIU Lina
楼高波1,2(), 姚潇翎3, 倪静雯1, 傅深渊1,2, 刘丽娜1,2()
通讯作者:
刘丽娜
作者简介:
楼高波(1993—),男,博士,讲师,研究方向为复合材料与胶黏剂。E-mail:1142673814@qq.com。
基金资助:
CLC Number:
LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156.
楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1476
样品 | E12/g | 双氰胺/g | 2-甲基咪唑/g | 改性剂 |
---|---|---|---|---|
纯EP | 100 | 2.5 | 0.5 | — |
EP/8%MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MPA-DAD |
EP/8%GM@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g GM@MPA-DAD |
EP/8%MNs@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MNs@MPA-DAD |
样品 | E12/g | 双氰胺/g | 2-甲基咪唑/g | 改性剂 |
---|---|---|---|---|
纯EP | 100 | 2.5 | 0.5 | — |
EP/8%MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MPA-DAD |
EP/8%GM@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g GM@MPA-DAD |
EP/8%MNs@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MNs@MPA-DAD |
样品 | 拉伸强度 /MPa | 拉伸模量 /MPa | 拉伸韧性 /MJ·m-3 | 弯曲强度 /MPa | 弯曲模量 /GPa | 弯曲韧性 /MJ·m-3 | 冲击强度 /kJ·m-2 |
---|---|---|---|---|---|---|---|
纯EP | 46.40±1.28 | 2522±56 | 0.42±0.08 | 69.13±2.11 | 2.71±0.13 | 1.11±0.09 | 6.01±1.40 |
EP/8%MPA-DAD | 54.91±2.21 | 1875±102 | 4.69±0.18 | 82.61±2.37 | 2.30±0.09 | 7.89±0.18 | 10.24±1.73 |
EP/8%GM@MPA-DAD | 50.84±1.92 | 1827±78 | 1.21±0.13 | 82.67±1.98 | 2.37±0.08 | 6.14±0.11 | 10.58±2.13 |
EP/8%MNs@MPA-DAD | 52.13±1.74 | 1939±95 | 1.69±0.09 | 80.14±2.08 | 2.27±0.05 | 4.08±0.13 | 9.42±1.34 |
样品 | 拉伸强度 /MPa | 拉伸模量 /MPa | 拉伸韧性 /MJ·m-3 | 弯曲强度 /MPa | 弯曲模量 /GPa | 弯曲韧性 /MJ·m-3 | 冲击强度 /kJ·m-2 |
---|---|---|---|---|---|---|---|
纯EP | 46.40±1.28 | 2522±56 | 0.42±0.08 | 69.13±2.11 | 2.71±0.13 | 1.11±0.09 | 6.01±1.40 |
EP/8%MPA-DAD | 54.91±2.21 | 1875±102 | 4.69±0.18 | 82.61±2.37 | 2.30±0.09 | 7.89±0.18 | 10.24±1.73 |
EP/8%GM@MPA-DAD | 50.84±1.92 | 1827±78 | 1.21±0.13 | 82.67±1.98 | 2.37±0.08 | 6.14±0.11 | 10.58±2.13 |
EP/8%MNs@MPA-DAD | 52.13±1.74 | 1939±95 | 1.69±0.09 | 80.14±2.08 | 2.27±0.05 | 4.08±0.13 | 9.42±1.34 |
样品 | Tonset/℃ | Tmax/℃ | Yc/% |
---|---|---|---|
纯EP | 375.0 | 437.7 | 8.9 |
EP/8%MPA-DAD | 311.8 | 394.3 | 13.0 |
EP/8%GM@MPA-DAD | 309.7 | 394.8 | 13.4 |
EP/8%MNs@MPA-DAD | 321.2 | 399.3 | 14.3 |
样品 | Tonset/℃ | Tmax/℃ | Yc/% |
---|---|---|---|
纯EP | 375.0 | 437.7 | 8.9 |
EP/8%MPA-DAD | 311.8 | 394.3 | 13.0 |
EP/8%GM@MPA-DAD | 309.7 | 394.8 | 13.4 |
EP/8%MNs@MPA-DAD | 321.2 | 399.3 | 14.3 |
样品 | UL-94 | LOI/% | ||
---|---|---|---|---|
(t1/t2)/s | 熔滴 | 等级 | ||
纯EP | >30 | 有 | NR | 20.4±0.3 |
EP/8%MPA-DAD | 4.9/1.1 | 无 | V-0 | 29.0±0.3 |
EP/8%GM@MPA-DAD | 7.5/2.1 | 无 | V-0 | 28.6±0.3 |
EP/8%MNs@MPA-DAD | 5.3/2.1 | 无 | V-0 | 28.9±0.3 |
样品 | UL-94 | LOI/% | ||
---|---|---|---|---|
(t1/t2)/s | 熔滴 | 等级 | ||
纯EP | >30 | 有 | NR | 20.4±0.3 |
EP/8%MPA-DAD | 4.9/1.1 | 无 | V-0 | 29.0±0.3 |
EP/8%GM@MPA-DAD | 7.5/2.1 | 无 | V-0 | 28.6±0.3 |
EP/8%MNs@MPA-DAD | 5.3/2.1 | 无 | V-0 | 28.9±0.3 |
样品 | TTI/s | TPHRR/s | PHRR/kW·m-2 | THR/MJ·m-2 | PSPR/m2·s-1 | TSP/m2 | FIGRA/kW·m-2·s-1 |
---|---|---|---|---|---|---|---|
纯EP | 62±2 | 139±4 | 1095±29 | 117.6±2.2 | 0.24±0.013 | 23.1±2.3 | 7.9 |
EP/8%MPA-DAD | 54±2 | 109±3 | 746±27 | 88.4±1.5 | 0.22±0.008 | 22.7±1.1 | 6.8 |
EP/8%GM@MPA-DAD | 53±3 | 120±3 | 783±24 | 98.0±2.0 | 0.22±0.010 | 21.6±2.0 | 6.5 |
EP/8%MNs@MPA-DAD | 53±1 | 143±4 | 723±19 | 94.4±1.7 | 0.22±0.011 | 22.3±1.7 | 5.1 |
样品 | TTI/s | TPHRR/s | PHRR/kW·m-2 | THR/MJ·m-2 | PSPR/m2·s-1 | TSP/m2 | FIGRA/kW·m-2·s-1 |
---|---|---|---|---|---|---|---|
纯EP | 62±2 | 139±4 | 1095±29 | 117.6±2.2 | 0.24±0.013 | 23.1±2.3 | 7.9 |
EP/8%MPA-DAD | 54±2 | 109±3 | 746±27 | 88.4±1.5 | 0.22±0.008 | 22.7±1.1 | 6.8 |
EP/8%GM@MPA-DAD | 53±3 | 120±3 | 783±24 | 98.0±2.0 | 0.22±0.010 | 21.6±2.0 | 6.5 |
EP/8%MNs@MPA-DAD | 53±1 | 143±4 | 723±19 | 94.4±1.7 | 0.22±0.011 | 22.3±1.7 | 5.1 |
1 | 陈子豪, 阮英波, 杨杰. 环氧树脂增韧方法及机理研究进展[J]. 热固性树脂, 2022, 37(1): 64-69. |
CHEN Zihao, RUAN Yingbo, YANG Jie. Research progress on toughening methods and mechanism of epoxy resin[J]. Thermosetting Resin, 2022, 37(1): 64-69. | |
2 | LOU Gaobo, MA Zhewen, DAI Jinfeng, et al. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13595-13605. |
3 | XIANG Qing, QIANG Yujie, GUO Lei. Designing a novel GO@AAP reinforced epoxy coating for achieving the long-term corrosion protection of steel substrate[J]. Progress in Organic Coatings, 2023, 174: 107293. |
4 | LOU Gaobo, LI Qing, JIN Qian, et al. Preparation of environment-friendly solid epoxy resin with high-toughness via one-step banburying[J]. RSC advances, 2022, 12(26): 16615-16623. |
5 | YANG Jiayao, HE Xingwei, WANG Hengxu, et al. High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behavior, and thermal properties[J]. Journal of Applied Polymer Science, 2020, 137(17): 48596. |
6 | 楼高波, 姚潇翎, 周亮, 等. 固态环氧树脂的一步密炼增韧[J]. 热固性树脂, 2023, 38(1): 12-16. |
LOU Gaobo, YAO Xiaoling, ZHOU Lianget al. One-step banburying toughening of solid epoxy resin[J]. Thermosetting Resin, 2023, 38(1): 12-16. | |
7 | YANG Yunxian, WANG Deyi, JIAN Rongkun, et al. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: A review[J]. Progress in Organic Coatings, 2023, 175: 107316. |
8 | 楼高波, 张恒, 饶青青, 等. 生物基阻燃剂在环氧树脂中的应用研究进展[J]. 林业工程学报, 2023, 8(5): 13-26. |
LOU Gaobo, ZHANG Heng, RAO Qingqing, et al. Recent advances of application of bio-based flame retardant in epoxy resin[J]. Journal of Forestry Engineering, 2023, (5): 13-26. | |
9 | Bello SA, Agunsoye JO, Hassan SB, et al. Epoxy resin based composites, mechanical and tribological properties: A review[J]. Tribology in Industry, 2015, 37(4): 500-524. |
10 | YANG Jiayao, WANG Hengxu, LIU Xiaohuan, et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins[J]. Composites Science and Technology, 2021, 212: 108884. |
11 | NASCIMENTO Caio R F, SILVA Adriana A, SOARES Bluma G. Epoxy networks modified with functionalized liquid polyisoprene rubbers with enhanced toughness and stiffness[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(1): 69-77. |
12 | ZHANG Lili, ZHANG Xinghua, WEI Xinghai, et al. Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J]. Composites Science and Technology, 2022, 230: 109787. |
13 | THIRUNAVUKKARASU Naveen, BHUVANESWARI GUNASEKARAN Harini, PENG Shuqiang, et al. Study on the interface toughening of particle/fibre reinforced epoxy composites with molecularly designed core-shell particles and various interface 3D models[J]. Materials & Design, 2023, 225: 111510. |
14 | DOMUN Nadiim, HADAVINIA Homayoun, ZHANG Tao, et al. Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content[J]. Nanocomposites, 2017, 3(3): 85-96. |
15 | HUO Siqi, SONG Pingan, YU Bin, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science, 2021, 114: 101366. |
16 | BIFULCO Aurelio, AVOLIO Roberto, LEHNER Sandro, et al. In situ P-modified hybrid silica-epoxy nanocomposites via a green hydrolytic sol-gel route for flame-retardant applications[J]. ACS Applied Nano Materials, 2023, 6(9): 7422-7435. |
17 | YIN Lian, GONG Kaili, ZHOU Keqing, et al. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin[J]. Journal of Colloid and Interface Science, 2022, 608: 853-863. |
18 | ZHOU Zili, QIAN Jian, ZHANG Jian, et al. Phosphorus and bromine modified epoxy resin with enhanced cryogenic mechanical properties and liquid oxygen compatibility simultaneously[J]. Polymer Testing, 2021, 94: 107051. |
19 | JIANG Guangyong, XIAO Yuling, QIAN Ziyan, et al. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites[J]. Chemical Engineering Journal, 2023, 451: 137823. |
20 | 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217. |
CHEN Jiulong, WANG Shuang, DU Xiaosheng. Advances in epoxy/two-dimensional nanomaterial composites[J]. Materials Reports, 2021, 35(17): 17210-17217. | |
21 | SHEN Xiaojun, PEI Xianqiang, FU Shaoyun, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer, 2013, 54(3): 1234-1242. |
22 | UPADHYAY R K, KUMAR A. Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact[J]. Tribology International, 2019, 130: 106-118. |
23 | HUANG Zhiping, ZHAO Wenjie, ZHAO Wenchao, et al. Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles[J]. Friction, 2021, 9(1): 104-118. |
24 | ZOU Bin, QIU Shuilai, QIAN Ziyan, et al. Phosphorus/nitrogen-codoped molybdenum disulfide/cobalt borate nanostructures for flame-retardant and tribological applications[J]. ACS Applied Nano Materials, 2021, 4(10): 10495-10504. |
25 | WANG Pengji, LIAO Duijun, HU Xiaoping, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy[J]. Polymer Degradation and Stability, 2019, 159: 153-162. |
26 | LOU Gaobo, RAO Qingqing, LI Qing, et al. Novel ionic complex with flame retardancy and ultrastrong toughening effect on epoxy resin[J]. Chemical Engineering Journal, 2023, 455: 139334. |
27 | PAN Xiaofeng, GAO Huailing, LU Yang, et al. Transforming ground mica into high-performance biomimetic polymeric mica film[J]. Nature Communications, 2018, 9: 2974. |
28 | DING Jiheng, ZHAO Hongran, YU Haibin. Superior to graphene: Super-anticorrosive natural mica nanosheets[J]. Nanoscale, 2020, 12(30): 16253-16261. |
29 | YAN Yuanwei, CHEN Li, JIAN Rongkun, et al. Intumescence: An effect way to flame retardance and smoke suppression for polystryene[J]. Polymer Degradation and Stability, 2012, 97(8): 1423-1431. |
30 | ZHU Zongmin, SHANG Ke, WANG Luoxin, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188. |
31 | FANG Fang, HUO Siqi, SHEN Haifeng, et al. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins[J]. Composites Communications, 2020, 17: 104-108. |
32 | LI Wenxiong, ZHANG Haijun, HU Xiaoping, et al. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets[J]. Journal of Hazardous Materials, 2020, 398: 123001. |
[1] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[2] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
[3] | LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048. |
[4] | LIU Li, FENG Bo, WEN Yang, GU Qixiong. Research progress in synthesis, functionalization and metal adsorption of silica-based mesoporous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5063-5078. |
[5] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[6] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
[7] | SUN Xinru, ZHANG Qiuyi, ZHUO Jiankun, YANG Run, YAO Qiang. Research progress of CaCl2 composite thermochemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4506-4515. |
[8] | SHI Jiabo, ZHANG Yuxuan, CHEN Xuefeng, TAN Jiaojun. Preparation and oil-water separation property of tannic acid-nanoclay synergistically modified collagen fiber-based porous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4624-4629. |
[9] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
[10] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[11] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[12] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[13] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[14] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
[15] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |