Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5095-5105.DOI: 10.16085/j.issn.1000-6613.2023-1342
• Materials science and technology • Previous Articles
CAO Shuyang(), SHI Jingbo(), DONG Youming, LYU Jianxiong
Received:
2023-08-07
Revised:
2023-10-17
Online:
2024-09-30
Published:
2024-09-15
Contact:
SHI Jingbo
通讯作者:
施静波
作者简介:
曹树扬(1998—),男,硕士,研究方向为木材与水分关系。E-mail:caosy@njfu.edu.cn。
基金资助:
CLC Number:
CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105.
曹树扬, 施静波, 董友明, 吕建雄. 不同温度下斜叶桉木材吸湿、解吸等温线与热力学性质[J]. 化工进展, 2024, 43(9): 5095-5105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1342
阶段 | 水分活度 | 平衡时间/h | |||
---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | ||
吸湿 | 0.1 | — | — | 4 | 2 |
0.17 | — | 8 | — | — | |
0.25 | 66 | — | — | — | |
0.3 | 79 | 12 | 4 | 4 | |
0.5 | 72 | 12 | 6 | 4 | |
0.65 | 96 | 20 | 8 | 4 | |
0.8 | 96 | 20 | 8 | 6 | |
0.95 | 264 | 36 | 14 | 10 | |
解吸 | 0.8 | 240 | 22 | 8 | 6 |
0.65 | 144 | 22 | 8 | 4 | |
0.5 | 144 | 16 | 8 | 4 | |
0.3 | 96 | 16 | 4 | 4 | |
0.25 | 96 | — | — | — | |
0.17 | — | 10 | — | — | |
0.1 | — | — | 4 | 2 |
阶段 | 水分活度 | 平衡时间/h | |||
---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | ||
吸湿 | 0.1 | — | — | 4 | 2 |
0.17 | — | 8 | — | — | |
0.25 | 66 | — | — | — | |
0.3 | 79 | 12 | 4 | 4 | |
0.5 | 72 | 12 | 6 | 4 | |
0.65 | 96 | 20 | 8 | 4 | |
0.8 | 96 | 20 | 8 | 6 | |
0.95 | 264 | 36 | 14 | 10 | |
解吸 | 0.8 | 240 | 22 | 8 | 6 |
0.65 | 144 | 22 | 8 | 4 | |
0.5 | 144 | 16 | 8 | 4 | |
0.3 | 96 | 16 | 4 | 4 | |
0.25 | 96 | — | — | — | |
0.17 | — | 10 | — | — | |
0.1 | — | — | 4 | 2 |
模型 | 参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | ||
GAB | Vm/cm3·g-1 | 0.05042 | 0.04876 | 0.0441 | 0.03755 | 0.08473 | 0.07372 | 0.0665 | 0.04842 |
C | 7.0358 | 5.80023 | 7.9611 | 8.5223 | 6.83001 | 6.67331 | 6.5971 | 7.22827 | |
K | 0.788 | 0.805 | 0.8285 | 0.8475 | 0.63 | 0.689 | 0.7259 | 0.79167 | |
R2 | 0.99936 | 0.99958 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.55×10-5 | 1.11×10-5 | 1.70×10-5 | 1.46×10-5 | 1.41×10-5 | 6.98×10-6 | 1.21×10-5 | 1.03×10-5 | |
H-H | W1/g·mol-1 | 35398.91 | 37120.47 | 40954.94 | 47646.97 | 21181.73 | 24301.4 | 26947.43 | 37082.32 |
K1 | 5.85426 | 4.88979 | 7.0538 | 7.3357 | 5.79242 | 5.60737 | 5.529 | 6.2284 | |
K2 | 0.78594 | 0.80625 | 0.8293 | 0.8462 | 0.629 | 0.68753 | 0.7246 | 0.7917 | |
R2 | 0.99936 | 0.99959 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.53×10-5 | 1.10×10-5 | 1.70×10-5 | 1.45×10-5 | 1.41×10-5 | 6.95×10-6 | 1.21×10-5 | 1.03×10-5 |
模型 | 参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | ||
GAB | Vm/cm3·g-1 | 0.05042 | 0.04876 | 0.0441 | 0.03755 | 0.08473 | 0.07372 | 0.0665 | 0.04842 |
C | 7.0358 | 5.80023 | 7.9611 | 8.5223 | 6.83001 | 6.67331 | 6.5971 | 7.22827 | |
K | 0.788 | 0.805 | 0.8285 | 0.8475 | 0.63 | 0.689 | 0.7259 | 0.79167 | |
R2 | 0.99936 | 0.99958 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.55×10-5 | 1.11×10-5 | 1.70×10-5 | 1.46×10-5 | 1.41×10-5 | 6.98×10-6 | 1.21×10-5 | 1.03×10-5 | |
H-H | W1/g·mol-1 | 35398.91 | 37120.47 | 40954.94 | 47646.97 | 21181.73 | 24301.4 | 26947.43 | 37082.32 |
K1 | 5.85426 | 4.88979 | 7.0538 | 7.3357 | 5.79242 | 5.60737 | 5.529 | 6.2284 | |
K2 | 0.78594 | 0.80625 | 0.8293 | 0.8462 | 0.629 | 0.68753 | 0.7246 | 0.7917 | |
R2 | 0.99936 | 0.99959 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.53×10-5 | 1.10×10-5 | 1.70×10-5 | 1.45×10-5 | 1.41×10-5 | 6.95×10-6 | 1.21×10-5 | 1.03×10-5 |
参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | |
S/m2∙g-1 | 192 | 186 | 168 | 143 | 323 | 281 | 254 | 185 |
参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | |
S/m2∙g-1 | 192 | 186 | 168 | 143 | 323 | 281 | 254 | 185 |
过程 | 等速温度Tβ/K | 决定系数R2 |
---|---|---|
吸湿 | 644.0 | 0.996 |
解吸 | 457.4 | 0.997 |
过程 | 等速温度Tβ/K | 决定系数R2 |
---|---|---|
吸湿 | 644.0 | 0.996 |
解吸 | 457.4 | 0.997 |
35 | LEFFLER John E. The enthalpy-entropy relationship and its implications for organic chemistry[J]. The Journal of Organic Chemistry, 1955, 20(9): 1202-1231. |
36 | KRUG R R, HUNTER W G, GRIEGER R A. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data[J]. The Journal of Physical Chemistry, 1976, 80(21): 2335-2341. |
37 | KRUG R R, HUNTER W G, GRIEGER R A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect[J]. The Journal of Physical Chemistry, 1976, 80(21): 2341-2351. |
38 | BRUNAUER Stephen, DEMING Lola S, Edwards DEMING W, et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society, 1940, 62(7): 1723-1732. |
39 | DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76/77: 137-152. |
40 | SING Kenneth S W. Physisorption of gases by carbon blacks[J]. Carbon, 1994, 32(7): 1311-1317. |
41 | GONELI André Luis Duarte, CORRÊA Paulo Cesar, DE OLIVEIRA Gabriel Henrique Horta, et al. Water sorption isotherms and thermodynamic properties of pearl millet grain[J]. International Journal of Food Science & Technology, 2010, 45(4): 828-838. |
42 | FREDRIKSSON Maria, THYBRING Emil Engelund. Scanning or desorption isotherms? Characterising sorption hysteresis of wood[J]. Cellulose, 2018, 25(8): 4477-4485. |
43 | MERAKEB Seddik, DUBOIS Frédéric, PETIT Christophe. Modeling of the sorption hysteresis for wood[J]. Wood Science and Technology, 2009, 43(7): 575-589. |
44 | SHI Jingbo, AVRAMIDIS Stavros. Water sorption hysteresis in wood: Ⅰ Review and experimental patterns-geometric characteristics of scanning curves[J]. Holzforschung, 2017, 71(4): 307-316. |
45 | PATERA Alessandra, DERLUYN Hannelore, DEROME Dominique, et al. Influence of sorption hysteresis on moisture transport in wood[J]. Wood Science and Technology, 2016, 50(2): 259-283. |
46 | SALIN Jarl-Gunnar. Inclusion of the sorption hysteresis phenomenon in future drying models. Some basic considerations[J]. Maderas Ciencia y Tecnología, 2011, 13(2): 173-182. |
47 | 黄彦快, 王喜明. 木材吸湿机理及其应用[J]. 世界林业研究, 2014, 27(3): 35-40. |
HUANG Yankuai, WANG Ximing. Wood hygroscopic mechanism and its application[J]. World Forestry Research, 2014, 27(3): 35-40. | |
48 | 王舒, 魏洪斌, 伊松林, 等. 浸渍杉木吸湿滞后研究[J]. 安徽农业科学, 2010, 38(21): 11591-11593. |
WANG Shu, WEI Hongbin, YI Songlin, et al. Comparative research on sorption hysteresis of resin-impregnated Chinese fir[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11591-11593. | |
49 | PATERA Alessandra, DEROME Dominique, GRIFFA Michele, et al. Hysteresis in swelling and in sorption of wood tissue[J]. Journal of Structural Biology, 2013, 182(3): 226-234. |
50 | 杨昭, 李想, 陶志超. 豌豆种子吸附等温线与热力学性质研究[J]. 农业机械学报, 2017, 48(10): 323-329. |
YANG Zhao, LI Xiang, TAO Zhichao. Sorption isotherms and thermodynamic properties of pea seed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 323-329. | |
51 | TSAMI E. Net isosteric heat of sorption in dried fruits[J]. Journal of Food Engineering, 1991, 14(4): 327-335. |
52 | BOUGAYR El Houssayne, LAKHAL El Khadir, IDLIMAM Ali, et al. Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge[J]. Applied Thermal Engineering, 2018, 143: 521-531. |
53 | RAWAT S P S, KHALI D P. Enthalpy-entropy compensation during sorption of water in wood[J]. Journal of Applied Polymer Science, 1996, 60(5): 787-790. |
54 | 李莞璐, 李京予, 郭娟, 等. 古代与现代柏木的水分吸附热力学比较研究[J]. 北京林业大学学报, 2023, 45(4): 126-135. |
LI Wanlu, LI Jingyu, GUO Juan, et al. A comparative study on moisture sorption thermodynamics of ancient and recent cypress[J]. Journal of Beijing Forestry University, 2023, 45(4): 126-135. | |
55 | MIHOUBI D, BELLAGI A. Thermodynamic analysis of sorption isotherms of bentonite[J]. The Journal of Chemical Thermodynamics, 2006, 38(9): 1105-1110. |
1 | 刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44-48. |
LIU Wenjing, ZHANG Yujun. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44-48. | |
2 | 刘一星, 赵广杰. 木材学[M]. 2版. 北京: 中国林业出版社, 2012. |
LIU Yixing, ZHAO Guangjie. Wood science[M]. 2nd ed. Beijing: China Forestry Publishing House, 2012. | |
3 | 仲翔, 张少军, 马尔妮. 不同含水率状态下木材细胞壁孔径分布变化[J]. 北京林业大学学报, 2021, 43(11): 128-136. |
ZHONG Xiang, ZHANG Shaojun, MA Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. | |
4 | 施静波, 程帅, 董会军, 等. 30mm厚斜叶桉锯材常规间歇干燥基准[J]. 北京林业大学学报, 2022, 44(11): 132-139. |
SHI Jingbo, CHENG Shuai, DONG Huijun, et al. An intermittent conventional drying schedule for 30mm-thick Eucalyptus obliqua lumbers[J]. Journal of Beijing Forestry University, 2022, 44(11): 132-139. | |
5 | 程新峰, 潘玲, 徐保国, 等. 菊花粉水分吸附等温线及热力学特性[J]. 食品科学, 2022, 43(3): 62-69. |
CHENG Xinfeng, PAN Ling, XU Baoguo, et al. Moisture adsorption isotherms and thermodynamic properties of chrysanthemum powder[J]. Food Science, 2022, 43(3): 62-69. | |
6 | BUXTON Patrick A. The measurement and control of atmospheric humidity in relation to entomological problems[J]. Bulletin of Entomological Research, 1931, 22(3): 431-447. |
7 | CLOUTIER A, FORTIN Y. Moisture content-water potential relationship of wood from saturated to dry conditions[J]. Wood Science and Technology, 1991, 25(4): 263-280. |
8 | AVRAMIDIS S. Enthalpy-entropy compensation and thermodynamic considerations in sorption phenomena[J]. Wood Science and Technology, 1992, 26(5): 329-333. |
9 | JALALUDIN Zaihan, HILL Callum A S, XIE Yanjun, et al. Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok[J]. Wood Material Science and Engineering, 2010, 5(3/4): 194-203. |
10 | XIE Yanjun, HILL Callum A S, XIAO Zefang, et al. Water vapor sorption kinetics of wood modified with glutaraldehyde[J]. Journal of Applied Polymer Science, 2010, 117(3): 1674-1682. |
11 | HILL Callum A S, NORTON Andrew J, NEWMAN Gary. The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus[J]. Wood Science and Technology, 2010, 44(3): 497-514. |
12 | POPESCU Carmen-Mihaela, HILL Callum A S, CURLING Simon, et al. The water vapour sorption behaviour of acetylated birch wood: How acetylation affects the sorption isotherm and accessible hydroxyl content[J]. Journal of Materials Science, 2014, 49(5): 2362-2371. |
13 | HIMMEL Sarah, Carsten MAI. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood[J]. Holzforschung, 2015, 69(5): 633-643. |
14 | OUERTANI Sahbi, AZZOUZ Soufien, HASSINI Lamine, et al. Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: Comparative study[J]. Industrial Crops and Products, 2014, 56: 200-210. |
15 | BRATASZ Ł, KOZŁOWSKA A, KOZŁOWSKI R. Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation[J]. European Journal of Wood and Wood Products, 2012, 70(4): 445-451. |
16 | 谷志攀, 阳季春, 张叶, 等. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008. |
GU Zhipan, YANG Jichun, ZHANG Ye, et al. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008. | |
17 | 赵亚, 张平平, 石启龙. 花生壳/仁的吸附等温线与热力学特性[J]. 食品科学, 2017, 38(7): 55-62. |
ZHAO Ya, ZHANG Pingping, SHI Qilong. Moisture adsorption isotherms and thermodynamic properties of peanut shell and kernel[J]. Food Science, 2017, 38(7): 55-62. | |
18 | OSWIN C R. The kinetics of package life. Ⅲ. The isotherm[J]. Journal of the Society of Chemical Industry, 1946, 65(12): 419-421. |
19 | DENT R W. A multilayer theory for gas sorption: Part Ⅰ: Sorption of a single gas [J]. Textile Research Journal, 1977, 47(3): 188-198. |
20 | BRUNAUER Stephen, EMMETT P H, TELLER Edward. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. |
21 | HAILWOOD A J, HORROBIN S. Absorption of water by polymers: Analysis in terms of a simple model[J]. Transactions of the Faraday Society, 1946, 42(0): B084-B092. |
22 | PELEG Micha. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms1[J]. Journal of Food Process Engineering, 1993, 16(1): 21-37. |
23 | 万婕, 夏雪, 周国辉, 等. 方便米粉的水分吸附和热力学特性[J]. 食品科学, 2019, 40(15): 8-14. |
WAN Jie, XIA Xue, ZHOU Guohui, et al. Moisture sorption isotherms and thermodynamic properties of instant rice noodles[J]. Food Science, 2019, 40(15): 8-14. | |
24 | HILL Callum A S. The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: A reappraisal[J]. Holzforschung, 2008, 62(4): 423-428. |
25 | Cristina SIMÓN, ESTEBAN Luis García, PALACIOS Paloma De, et al. Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum. ), radiata pine (Pinus radiata D. Don) and chestnut (Castanea sativa Mill.)[J]. Industrial Crops and Products, 2016, 94: 122-131. |
26 | 姚晴, 蔡家斌. 热处理辐射松吸湿解吸等温线的测定与分析[J]. 林业工程学报, 2018, 3(3): 35-41. |
YAO Qing, CAI Jiabin. Determination and analysis of moisture adsorption and desorption isotherms of heat-treated radiata pine[J]. Journal of Forestry Engineering, 2018, 3(3): 35-41. | |
27 | SHI Jingbo, KAWAI Yasuo, AVRAMIDIS Stavros, et al. Water sorption hysteresis in wood near 100℃[J]. Holzforschung, 2021, 75(1): 13-21. |
28 | 李珠, 殷方宇, 蒋佳荔, 等. 杉木应压木和对应木的水分吸附特性比较研究[J]. 木材科学与技术, 2022, 36(5): 37-42. |
LI Zhu, YIN Fangyu, JIANG Jiali, et al. Comparative studies on water vapor sorption characteristics between compression wood and opposite wood of Chinese fir[J]. Chinese Journal of Wood Science and Technology, 2022, 36(5): 37-42. | |
29 | SPALT Howard A. The fundamentals of water vapor sorption by wood[J]. Forest Products Journal, 1958, 8(10): 288-295. |
30 | 高鑫, 周凡, 付宗营, 等. 高温热处理对欧洲云杉和花旗松吸湿特性的影响[J]. 林业工程学报, 2018, 3(4): 25-29. |
GAO Xin, ZHOU Fan, FU Zongying, et al. Sorption isotherms characteristics of high temperature heat-treated Picea abies and Pseudotsuga menziesii [J]. Journal of Forestry Engineering, 2018, 3(4): 25-29. | |
31 | FAKHFAKH Rihab, MIHOUBI Daoued, KECHAOU Nabil. Moisture sorption isotherms and thermodynamic properties of bovine leather[J]. Heat and Mass Transfer, 2018, 54(4): 1163-1176. |
32 | AVIARA N A, AJIBOLA O O. Thermodynamics of moisture sorption in melon seed and cassava[J]. Journal of Food Engineering, 2002, 55(2): 107-113. |
33 | MASKAN Medeni, Fahrettin GÖĞÜŞ. Sorption isotherms and drying characteristics of mulberry (Morus alba)[J]. Journal of Food Engineering, 1998, 37(4): 437-449. |
34 | MADAMBA P S, DRISCOLL R H, BUCKLE K A. Enthalpy-entropy compensation models for sorption and browning of garlic[J]. Journal of Food Engineering, 1996, 28(2): 109-119. |
56 | Y N Nkolo MEZE’E, Noah NGAMVENG J, BARDET Sandrine. Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: The case of Bubinga (Guibourtia Tessmanii J. Léonard; G. Pellegriniana J. L.)[J]. Thermochimica Acta, 2008, 468(1/2): 1-5. |
57 | ARSLAN Nurhan, Hasan TOGˇRUL. Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach[J]. Journal of Food Engineering, 2005, 69(2): 133-145. |
58 | KAYA Sevim, KAHYAOGLU Talip. Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed[J]. Journal of Food Engineering, 2006, 76(2): 139-147. |
[1] | CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255. |
[2] | GU Zhipan, YANG Jichun, ZHANG Ye, TAO Leren, LIU Fanhan. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008. |
[3] | Kai ZHANG,Duoduo WU,Qiang LIU,Yue PENG,Zhen YANG,Yuanyuan DUAN. Determination of time of flight of pulse-echo burst for sound speed measurement in high density fluids [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1219-1226. |
[4] | Guangsheng LI,Qiang XIE,Xianglan ZHANG,Haiyong ZHANG. Solubility of phenolic compounds in low temperature coal tar based on molecular simulation [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 137-144. |
[5] | Junyao WANG, Yue ZHANG, Shuai DENG, Jun ZHAO, Taiwei SUN, Kaixiang LI, Yaofeng XU. Role of thermodynamic properties of CO2 mixtures in CCS: data, models and typical applications [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1244-1258. |
[6] | Meng YANG,Hua ZHANG,Yanbin QIN,Zhaofeng MENG. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf (R513A) and R134a [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1182-1189. |
[7] | JI Jun, CHEN Yue, ZHANG Xuelai, XU Xiaofeng, LI Yuyang, CHEN Qiyang. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1111-1117. |
[8] | LI Yuyang, ZHANG Xuelai, XU Xiaofeng, MUNYALO Jotham Muthoka, CHEN Yue, CHEN Qiyang. Preparation and cyclic properties of low temperature phase change materials of n-caprylic acid and myristic acid [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 689-693. |
[9] | ZHAO Yuqing, LÜ Bing. Experimental research on a mixed refrigerant replacing R22 [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2866-2873. |
[10] | JIA Yanping, JIANG Xiuping, ZHANG Lanhe, ZHANG Haifeng, WANG Wei, CHEN Zicheng. Fly ash modified by HCl/H2SO4 and their adsorption capacity [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2331-2336. |
[11] | FAN Tielin, CHEN Mimi, TAN Xing, ZHAO Fengqing. Preparation and properties of shape-stabilized phase change aggregate from fatty acid and waste autoclaved aerated concrete [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 996-1002. |
[12] | LI Ying, ZHOU Dan, XU Qinqin, YIN Jianzhong. Molecular simulation of supercritical carbon dioxide microemulsion [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 774-782. |
[13] | HAN Zhonghe, PAN Ge, FAN Wei, WANG Zhi. Effect of internal heat exchanger on thermodynamic performance of low temperature organic Rankine cycle and working fluid selection [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 40-47. |
[14] | ZHOU Yumei, ZHOU Baojing, NIE Xuemei, YE Renlong, GONG Xuedong, ZHU Weihua, XIAO Heming. A theoretical study on the microencapsulation of herbicide MCPA with native β-cyclodextrin and its derivatives by a molecular dynamics/quantum mechanics/continuum solvent model approach [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4185-4190. |
[15] | YU He1,ZHAO Jigang1,HOU Xiaoming1,2,SHEN Benxian1. Thermodynamic analysis on the process of S Zorb reaction adsorption desulfurization [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2843-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |