Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5063-5078.DOI: 10.16085/j.issn.1000-6613.2023-1424
• Materials science and technology • Previous Articles
LIU Li1,2(), FENG Bo1,2,3(), WEN Yang1,2, GU Qixiong1,2
Received:
2023-08-15
Revised:
2023-10-15
Online:
2024-09-30
Published:
2024-09-15
Contact:
FENG Bo
刘丽1,2(), 冯博1,2,3(), 文洋1,2, 古启雄1,2
通讯作者:
冯博
作者简介:
刘丽(1997—),女,博士研究生,研究方向为稀土废水处理。E-mail:ll9888520@163.com。
基金资助:
CLC Number:
LIU Li, FENG Bo, WEN Yang, GU Qixiong. Research progress in synthesis, functionalization and metal adsorption of silica-based mesoporous materials[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5063-5078.
刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1424
硅源 | 硅前体提取方法 | 硅质量 分数/% | 介孔材料 | 参考文献 |
---|---|---|---|---|
玉米芯灰 | 碱提酸沉 | 50.4 | 提取SiO2 | [ |
甘蔗渣和叶灰 | 煅烧和酸浸 | 88.0~95.0 | SiNPs | [ |
麦秆灰 | 碱回流 | 99.0 | MCM-41 | [ |
麦秸灰 | 碱回流 | >90.0 | MCM-41 | [ |
稻壳灰 | 碱熔/酸浸 | 88.5/95.4 | KCC-1 | [ |
棕榈油燃料灰 | 碱熔/酸浸 | 47.7/85.5 | SBA-15 | [ |
粉煤灰 | 碱熔 | 46.2~54.8 | MCM-41 | [ |
硅灰 | — | 96.9 | SiNPs | [ |
铜矿石尾矿 | 碱性熔盐 | 68.2 | MCM-41 | [ |
金矿尾矿 | 碱熔 | 36.4/77.7 | MSU-3/SBA-15 | [ |
铁矿尾矿 | 碱熔 | 71.3 | MS | [ |
再生玻璃 | 碱熔 | 97.8 | MCM-41 | [ |
电子垃圾 | 碱抽提 | 78.0 | MCM-48 | [ |
坡缕石 | 碱煅烧 | 50.0 | MCM-41 | [ |
阿尔及利亚 膨润土 | 碱熔 | 60.5 | MCM-41/SBA-15 | [ |
高岭土 | 煅烧和酸浸 | 95.17 | MCM-41 | [ |
埃洛石 | 碱老化 | 32.3 | SBA-15 | [ |
硅藻土 | 碱抽提 | 92.8 | MCM-41 | [ |
累托石 | 碱抽提 | 40.4 | MCM-41 | [ |
珍珠岩 | 酸浸和碱抽提 | 70.8 | MCM-41 | [ |
硅源 | 硅前体提取方法 | 硅质量 分数/% | 介孔材料 | 参考文献 |
---|---|---|---|---|
玉米芯灰 | 碱提酸沉 | 50.4 | 提取SiO2 | [ |
甘蔗渣和叶灰 | 煅烧和酸浸 | 88.0~95.0 | SiNPs | [ |
麦秆灰 | 碱回流 | 99.0 | MCM-41 | [ |
麦秸灰 | 碱回流 | >90.0 | MCM-41 | [ |
稻壳灰 | 碱熔/酸浸 | 88.5/95.4 | KCC-1 | [ |
棕榈油燃料灰 | 碱熔/酸浸 | 47.7/85.5 | SBA-15 | [ |
粉煤灰 | 碱熔 | 46.2~54.8 | MCM-41 | [ |
硅灰 | — | 96.9 | SiNPs | [ |
铜矿石尾矿 | 碱性熔盐 | 68.2 | MCM-41 | [ |
金矿尾矿 | 碱熔 | 36.4/77.7 | MSU-3/SBA-15 | [ |
铁矿尾矿 | 碱熔 | 71.3 | MS | [ |
再生玻璃 | 碱熔 | 97.8 | MCM-41 | [ |
电子垃圾 | 碱抽提 | 78.0 | MCM-48 | [ |
坡缕石 | 碱煅烧 | 50.0 | MCM-41 | [ |
阿尔及利亚 膨润土 | 碱熔 | 60.5 | MCM-41/SBA-15 | [ |
高岭土 | 煅烧和酸浸 | 95.17 | MCM-41 | [ |
埃洛石 | 碱老化 | 32.3 | SBA-15 | [ |
硅藻土 | 碱抽提 | 92.8 | MCM-41 | [ |
累托石 | 碱抽提 | 40.4 | MCM-41 | [ |
珍珠岩 | 酸浸和碱抽提 | 70.8 | MCM-41 | [ |
结构 | 代表性材料 | 代表性结构 |
---|---|---|
核-壳结构 | Fe3O4@nSiO2@mSiO2球体 Fe3O4@mSiO2球体(单核) Fe3O4-x@mSiO2球体(多核) | |
嵌式结构 | Fe x O y -SBA-15米粒状颗粒 Fe x O y -MCM-41球状颗粒 Fe2O3/FeO x -SBA-16 Fe3O4/Fe2O3-mSiO2球体/纳米棒 Fe3O4/FMSMs球体 | |
摇铃式中空结构 | Fe3O4/Fe2O3@mSiO2椭圆体 Fe3O4/Fe2O3@mSiO2椭圆体(双介孔壳) Fe3O4/Fe2O3@mSiO2球体(模板法) Fe3O4/Fe2O3@mSiO2球体(多壳可调) Fe3O4@mSiO2球体 (水热腐蚀法) | |
mSiO2封装Fe3O4 | mSiO2封装Fe3O4 | — |
结构 | 代表性材料 | 代表性结构 |
---|---|---|
核-壳结构 | Fe3O4@nSiO2@mSiO2球体 Fe3O4@mSiO2球体(单核) Fe3O4-x@mSiO2球体(多核) | |
嵌式结构 | Fe x O y -SBA-15米粒状颗粒 Fe x O y -MCM-41球状颗粒 Fe2O3/FeO x -SBA-16 Fe3O4/Fe2O3-mSiO2球体/纳米棒 Fe3O4/FMSMs球体 | |
摇铃式中空结构 | Fe3O4/Fe2O3@mSiO2椭圆体 Fe3O4/Fe2O3@mSiO2椭圆体(双介孔壳) Fe3O4/Fe2O3@mSiO2球体(模板法) Fe3O4/Fe2O3@mSiO2球体(多壳可调) Fe3O4@mSiO2球体 (水热腐蚀法) | |
mSiO2封装Fe3O4 | mSiO2封装Fe3O4 | — |
吸附材料 | 金属 | 条件 | 吸附容量/mg·g-1 | 等温模型 | 动力学模型 | 参考文献 | |
---|---|---|---|---|---|---|---|
pH | T/K | ||||||
Al-MCM-41 | Cs(Ⅰ) | 7 | RT | 84.0 | Freundlich | — | [ |
MCM-41/NH2-NTAA-MCM-41 | MnO4(Ⅰ) | 3 | RT | 23.3/164.5 | Langmuir | PSO | [ |
Pb(Ⅱ) | 5 | RT | 37.8/147.5 | ||||
胍-SBA-16 | Pb(Ⅱ) | 8 | 303 | 289.9 | Langmuir | PSO | [ |
Hg(Ⅱ) | 5 | 308 | 259.9 | ||||
Cd(Ⅱ) | 5 | 313 | 228.8 | ||||
氨基丙基-SBA-15/ 氨基丙基-PVP-SBA-15 | Ni(Ⅱ) | 6.66 | 298 | 19.2/72.4 | Langmuir | PFO | [ |
Cu(Ⅱ) | 27.3/128.2 | ||||||
Pb(Ⅱ) | 65.8/175.4 | ||||||
壳聚糖-MCM-41 | Be(Ⅱ) | 6 | RT | — | Langmuir和Freundlich | PSO | [ |
8-羟基喹啉-MSNs | V(Ⅱ) | 4 | RT | 492.6 | Langmuir | — | [ |
聚羧酸气凝胶 | Pd(Ⅱ) | 2.3 | RT | 369.0 | Sips | — | [ |
二硫代草酰胺-SBA-15 | Co(Ⅱ) | 10 | 318 | 2500.0 | Freundlich | PSO | [ |
Sr(Ⅱ)印迹聚合物 | Sr(Ⅱ) | 6.5 | 298/308 | 47.3/89.1 | Langmuir | PSO | [ |
壳聚糖-PAA-MCM-41 | Hg(Ⅱ) | 4 | 298 | 164.0 | Langmuir | PSO | [ |
硫杂冠醚@SBA-15 | Au(Ⅲ) | 2 | 303 | 129.1 | Langmuir | PSO和PFO | [ |
MnFe2O4-MCM-41-SH | Sb(Ⅲ) | 7 | RT | 164.8 | Langmuir | PSO | [ |
EDTA-MSF | Nd(Ⅲ) | 6 | 298 | 117.0 | Langmuir | PSO | [ |
Dy(Ⅲ)印迹IMS | Dy(Ⅲ) | 2 | 298 | 22.3 | Langmuir | PSO | [ |
硫醇-SBA-15 | Pt(Ⅳ) | 1~4 | RT | 222.0 | Langmuir | — | [ |
铀酰离子印迹-MS | U(Ⅵ) | 5.2 | 298 | 80.0 | Langmuir | PSO | [ |
氨基丙基-MCM-41 | Cr(Ⅵ) | 2 | 298 | 78.8 | Langmuir | — | [ |
氨基丙基-CH3-MCM-41 | 29.2 | ||||||
乙醇胺-KIT-6 | Re(Ⅶ) | 3 | 303 | 111.4 | Langmuir | — | [ |
吸附材料 | 金属 | 条件 | 吸附容量/mg·g-1 | 等温模型 | 动力学模型 | 参考文献 | |
---|---|---|---|---|---|---|---|
pH | T/K | ||||||
Al-MCM-41 | Cs(Ⅰ) | 7 | RT | 84.0 | Freundlich | — | [ |
MCM-41/NH2-NTAA-MCM-41 | MnO4(Ⅰ) | 3 | RT | 23.3/164.5 | Langmuir | PSO | [ |
Pb(Ⅱ) | 5 | RT | 37.8/147.5 | ||||
胍-SBA-16 | Pb(Ⅱ) | 8 | 303 | 289.9 | Langmuir | PSO | [ |
Hg(Ⅱ) | 5 | 308 | 259.9 | ||||
Cd(Ⅱ) | 5 | 313 | 228.8 | ||||
氨基丙基-SBA-15/ 氨基丙基-PVP-SBA-15 | Ni(Ⅱ) | 6.66 | 298 | 19.2/72.4 | Langmuir | PFO | [ |
Cu(Ⅱ) | 27.3/128.2 | ||||||
Pb(Ⅱ) | 65.8/175.4 | ||||||
壳聚糖-MCM-41 | Be(Ⅱ) | 6 | RT | — | Langmuir和Freundlich | PSO | [ |
8-羟基喹啉-MSNs | V(Ⅱ) | 4 | RT | 492.6 | Langmuir | — | [ |
聚羧酸气凝胶 | Pd(Ⅱ) | 2.3 | RT | 369.0 | Sips | — | [ |
二硫代草酰胺-SBA-15 | Co(Ⅱ) | 10 | 318 | 2500.0 | Freundlich | PSO | [ |
Sr(Ⅱ)印迹聚合物 | Sr(Ⅱ) | 6.5 | 298/308 | 47.3/89.1 | Langmuir | PSO | [ |
壳聚糖-PAA-MCM-41 | Hg(Ⅱ) | 4 | 298 | 164.0 | Langmuir | PSO | [ |
硫杂冠醚@SBA-15 | Au(Ⅲ) | 2 | 303 | 129.1 | Langmuir | PSO和PFO | [ |
MnFe2O4-MCM-41-SH | Sb(Ⅲ) | 7 | RT | 164.8 | Langmuir | PSO | [ |
EDTA-MSF | Nd(Ⅲ) | 6 | 298 | 117.0 | Langmuir | PSO | [ |
Dy(Ⅲ)印迹IMS | Dy(Ⅲ) | 2 | 298 | 22.3 | Langmuir | PSO | [ |
硫醇-SBA-15 | Pt(Ⅳ) | 1~4 | RT | 222.0 | Langmuir | — | [ |
铀酰离子印迹-MS | U(Ⅵ) | 5.2 | 298 | 80.0 | Langmuir | PSO | [ |
氨基丙基-MCM-41 | Cr(Ⅵ) | 2 | 298 | 78.8 | Langmuir | — | [ |
氨基丙基-CH3-MCM-41 | 29.2 | ||||||
乙醇胺-KIT-6 | Re(Ⅶ) | 3 | 303 | 111.4 | Langmuir | — | [ |
1 | SALIMIAN S, ZADHOUSH A, MOHAMMADI A. A review on new mesostructured composite materials: Part Ⅰ. Synthesis of polymer-mesoporous silica nanocomposite[J]. Journal of Reinforced Plastics and Composites, 2018, 37(7): 441-459. |
2 | 郭程, 张威, 唐云. 有序介孔材料: 历史、现状与发展趋势[J]. 高等学校化学学报, 2022, 43(8): 25-41. |
GUO Cheng, ZHANG Wei, TANG Yun. Ordered mesoporous materials: History, progress and perspective[J]. Chemical Journal of Chinese Universities, 2022, 43(8): 25-41. | |
3 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712. |
4 | QIU Pengpeng, MA Bing, HUNG Chin-Te, et al. Spherical mesoporous materials from single to multilevel architectures[J]. Accounts of Chemical Research, 2019, 52(10): 2928-2938. |
5 | ZHAO Dongyuan, HUO Qisheng, FENG Jianglin, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036. |
6 | TIAN Bozhi, LIU Xiaoying, TU Bo, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J]. Nature Materials, 2003, 2(3): 159-163. |
7 | SHI Yifeng, WAN Ying, TU Bo, et al. Nanocasting synthesis of ordered mesoporous silicon nitrides with a high nitrogen content[J]. The Journal of Physical Chemistry C, 2008, 112(1): 112-116. |
8 | HOCHBAUM Allon I, GARGAS Daniel, HWANG Yun Jeong, et al. Single crystalline mesoporous silicon nanowires[J]. Nano Letters, 2009, 9(10): 3550-3554. |
9 | ZHANG Renyuan, TU Bo, ZHAO Dongyuan. Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method[J]. Chemistry—A European Journal, 2010, 16(33): 9977-9981. |
10 | TENG Zhaogang, SU Xiaodan, ZHENG Yuanyi, et al. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach[J]. Chemistry of Materials, 2013, 25(1): 98-105. |
11 | LIU Yong, LUO Yongfeng, ELZATAHRY Ahmed A, et al. Mesoporous TiO2 mesocrystals: Remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals[J]. ACS Central Science, 2015, 1(7): 400-408. |
12 | ZUO Xiuxia, XIA Yonggao, JI Qing, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano, 2017, 11(1): 889-899. |
13 | LAN Kun, LIU Yao, ZHANG Wei, et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. Journal of the American Chemical Society, 2018, 140(11): 4135-4143. |
14 | ZHANG Wei, HE Haili, TIAN Yong, et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting[J]. Chemical Science, 2018, 10(6): 1664-1670. |
15 | ZHANG Wei, HE Haili, TIAN Yong, et al. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production[J]. Nano Energy, 2019, 66: 104113. |
16 | WANG Yujie, LIU Yaozu, LI Hui, et al. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering[J]. Journal of the American Chemical Society, 2020, 142(8): 3736-3741. |
17 | ZOU Houbing, DAI Jinyu, SUO Jinquan, et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation[J]. Nature Communications, 2021, 12(1): 4968. |
18 | WALKER Rebecca C, HYER Andres P, GUO Haiquan, et al. Silica aerogel synthesis/process-property predictions by machine learning[J]. Chemistry of Materials, 2023, 35(13): 4897-4910. |
19 | KUSZ Jakub, BOISSIERE Cédric, IHIAWAKRIM Dris, et al. Insight into the molecular self-assembly and structural organization of mesoporous hybrid silica films with binary composition[J]. Chemistry of Materials, 2023, 35(18): 7671-7682. |
20 | AKTI Filiz. The effect of potassium modification on structural properties and catalytic activity of copper and iron containing SBA-16 catalysts for selective oxidation of ethanol[J]. Materials Chemistry and Physics, 2019, 227: 21-28. |
21 | KIPKEMBOI Pius, FOGDEN Andrew, ALFREDSSON Viveka, et al. Triblock copolymers as templates in mesoporous silica formation: Structural dependence on polymer chain length and synthesis temperature[J]. Langmuir, 2001, 17(17): 5398-5402. |
22 | COSTA José Arnaldo S, PARANHOS Caio M. Mitigation of silica-rich wastes: An alternative to the synthesis eco-friendly silica-based mesoporous materials[J]. Microporous and Mesoporous Materials, 2020, 309: 110570. |
23 | COSTA José Arnaldo S, DE JESUS Roberta A, SANTOS Danilo O, et al. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials[J]. Microporous and Mesoporous Materials, 2020, 291: 109698. |
24 | LIU Chunyan, WANG Suyan, RONG Zhihong, et al. Synthesis of structurally stable MCM-48 using mixed surfactants as co-template and adsorption of vitamin B12 on the mesoporous MCM-48[J]. Journal of Non-Crystalline Solids, 2010, 356(25/26/27): 1246-1251. |
25 | WEI Yen, JIN Danliang, DING Tianzhong, et al. A non-surfactant templating route to mesoporous silica materials[J]. Advanced Materials, 1998, 10(4): 313-316. |
26 | THOMAS Bejoy, BABONNEAU Florence, CORADIN Thibaud, et al. One-step introduction of broad-band mesoporosity in silica particles using a stimuli-responsive bioderived glycolipid[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 512-522. |
27 | AHMADY Azin Rashidy, HOSSEINZADEH Pakshid, SOLOUK Atefeh, et al. Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review[J]. Advances in Colloid and Interface Science, 2022, 299: 102581. |
28 | COLLART O, VAN DER VOORT P, VANSANT E F, et al. A high-yield reproducible synthesis of MCM-48 starting from fumed silica[J]. The Journal of Physical Chemistry B, 2001, 105(51): 12771-12777. |
29 | JIAO Jian, WANG Lei, WU Guangli, et al. Effects of framework structure and coupling modification on the properties of mesoporous silica/poly(methyl methacrylate) composites[J]. Journal of Reinforced Plastics and Composites, 2015, 34(3): 222-231. |
30 | HU Jun, GAO Feng, SHANG Yazhuo, et al. One-step synthesis of micro/mesoporous material templated by CTAB and imidazole ionic liquid in aqueous solution[J]. Microporous and Mesoporous Materials, 2011, 142(1): 268-275. |
31 | CHEN Fengxi, HUANG Lin, YANG Xiaojun, et al. Synthesis of Al-substituted MCM-41 and MCM-48 solid acids with mixed cationic-anionic surfactants as templates[J]. Materials Letters, 2013, 109: 299-301. |
32 | AHMED Sohail, RAMLI Anita, YUSUP Suzana. CO2 adsorption study on primary, secondary and tertiary amine functionalized Si-MCM-41[J]. International Journal of Greenhouse Gas Control, 2016, 51: 230-238. |
33 | MIAO Chao, LIANG Lixing, ZHANG Fan, et al. Review of the fabrication and application of porous materials from silicon-rich industrial solid waste[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 424-438. |
34 | VELMURUGAN Palanivel, SHIM Jaehong, LEE Kui-Jae, et al. Extraction, characterization, and catalytic potential of amorphous silica from corn cobs by sol-gel method[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 298-303. |
35 | BORTOLOTTO TEIXEIRA Luyza, GUZI DE MORAES Elisângela, PAOLINELLI SHINHE Giovanna, et al. Obtaining biogenic silica from sugarcane bagasse and leaf ash[J]. Waste and Biomass Valorization, 2021, 12(6): 3205-3221. |
36 | SOHRABNEZHAD Sh, JAFARZADEH A, POURAHMAD A. Synthesis and characterization of MCM-41 ropes[J]. Materials Letters, 2018, 212: 16-19. |
37 | MA Ying, CHEN Hui, SHI Yuanchang, et al. Low cost synthesis of mesoporous molecular sieve MCM-41 from wheat straw ash using CTAB as surfactant[J]. Materials Research Bulletin, 2016, 77: 258-264. |
38 | HASAN R, CHONG C C, BUKHARI S N, et al. Effective removal of Pb(Ⅱ) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash[J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 262-270. |
39 | ABDULLAH N, CHONG C C, RAZAK H A, et al. Synthesis of Ni/SBA-15 for CO2 reforming of CH4: Utilization of palm oil fuel ash as silica source[J]. Materials Today: Proceedings, 2018, 5(10): 21594-21603. |
40 | XU Chenglong, FENG Yali, LI Haoran, et al. Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives[J]. Journal of Cleaner Production, 2022, 344: 131065. |
41 | ZHOU Chunyu, YAN Chunjie, ZHAO Junjie, et al. Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 307-312. |
42 | FU Pingfeng, YANG Tianwen, FENG Jie, et al. Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 338-343. |
43 | SARI YILMAZ Muge, KARAKAS Sevil Begum. Low-cost synthesis of organic-inorganic hybrid MSU-3 from gold mine waste for CO2 adsorption[J]. Water, Air, & Soil Pollution, 2018, 229(10): 326. |
44 | HAN Xiaoyu, WANG Yaping, ZHANG Na, et al. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126391. |
45 | RAMÍREZ-ARÉVALO Marina S, Tezozomoc PÉREZ-LÓPEZ, Patricia QUINTANA-OWEN, et al. Comparative study of physicochemical properties of MCM-41 silica nanoparticles obtained from recycled glass and TEOS[J]. Silicon, 2023, 15(6): 2653-2661. |
46 | LIOU Tzong-Horng, JHENG Jhu-Yin. Synthesis of high-quality ordered mesoporous carbons using a sustainable way from recycling of E-waste as a silica template source[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6507-6517. |
47 | GUAN Yuan, WANG Shaomang, WANG Xin, et al. Preparation of mesoporous Al-MCM-41 from natural palygorskite and its adsorption performance for hazardous aniline dye-basic fuchsin[J]. Microporous and Mesoporous Materials, 2018, 265: 266-274. |
48 | SAHEL Fatma, SEBIH Fatiha, BELLAHOUEL Salima, et al. Synthesis and characterization of highly ordered mesoporous nanomaterials Al-MCM-41 and Al-SBA-15 from bentonite as efficient catalysts for the production of biodiesel MELA and EELA[J]. Research on Chemical Intermediates, 2020, 46(1): 133-148. |
49 | SANTOS Evânia, COSTA Luelc, OLIVEIRA Edipo, et al. Al-MCM-41 synthesized from Kaolin via hydrothermal route: Structural characterization and use as an efficient adsorbent of methylene blue[J]. Journal of the Brazilian Chemical Society, 2018: 29: 2378-2386. |
50 | PHAM Xuan Nui, NGUYEN Manh B, DOAN Huan V. Direct synthesis of highly ordered Ti-containing Al-SBA-15 mesostructured catalysts from natural halloysite and its photocatalytic activity for oxidative desulfurization of dibenzothiophene[J]. Advanced Powder Technology, 2020, 31(8): 3351-3360. |
51 | FU Yong, HUANG Yue, HU Jianshe. Preparation of chitosan/ MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(Ⅱ) ions[J]. Royal Society Open Science, 2018, 5(3): 171927. |
52 | CHEN Hongyun, YANG Huaming, XI Yunfei. Highly ordered and hexagonal mesoporous silica materials with large specific surface from natural rectorite mineral[J]. Microporous and Mesoporous Materials, 2019, 279: 53-60. |
53 | CHEN Hongyun, FU Siyao, FU Liangjie, et al. Simple synthesis and characterization of hexagonal and ordered Al-MCM-41 from natural perlite[J]. Minerals, 2019, 9(5): 264. |
54 | FALK G, SHINHE G P, TEIXEIRA L B, et al. Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions[J]. Ceramics International, 2019, 45(17): 21618-21624. |
55 | SEPTEMBER Lyle A, KHESWA Ntombizonke, SEROKA Ntalane S, et al. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash—A mini review[J]. RSC Advances, 2023, 13(2): 1370-1380. |
56 | NORSURAYA S, FAZLENA H, NORHASYIMI R. Sugarcane bagasse as a renewable source of silica to synthesize santa barbara amorphous-15 (SBA-15)[J]. Procedia Engineering, 2016, 148: 839-846. |
57 | LIOU Tzong-Horng, WANG Sheng-Yeh, LIN Yen-Tung, et al. Sustainable utilization of rice husk waste for preparation of ordered nanostructured mesoporous silica and mesoporous carbon: Characterization and adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128150. |
58 | YU Lei, FARINMADE Azeem, AJUMOBI Oluwole, et al. One-step hydropyrolysis and hydrotreating tandem reactions of miscanthus×giganteus using Ni impregnated ZSM-5/MCM-41 composites[J]. Energy & Fuels, 2021, 35(24): 20117-20130. |
59 | GHORBANI Farshid, YOUNESI Habibollah, MEHRABAN Zahra, et al. Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(5): 821-828. |
60 | AZIZI Seyed Naser, GHASEMI Shahram, Olia RANGRIZ-ROSTAMI. Synthesis of MCM-41 nanoparticles from stem of common reed ash silica and their application as substrate in electrooxidation of methanol[J]. Bulletin of Materials Science, 2018, 41(3): 88. |
61 | CHONG Chi cheng, ABDULLAH Nornasuha, BUKHARI Syahida Nasuha, et al. Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste[J]. International Journal of Hydrogen Energy, 2019, 44(37): 20815-20825. |
62 | ARUMUGAM A, KARUPPASAMY Gopinath, JEGADEESAN Gautham B. Synthesis of mesoporous materials from bamboo leaf ash and catalytic properties of immobilized lipase for hydrolysis of rubber seed oil[J]. Materials Letters, 2018, 225: 113-116. |
63 | PANEK R, WDOWIN M, FRANUS W, et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture[J]. Journal of CO2 Utilization, 2017, 22: 81-90. |
64 | ZHANG Xu, DU Tao, JIA He. Efficient activation of coal fly ash for silica and alumina leaches and the dependence of Pb(Ⅱ) removal capacity on the crystallization conditions of Al-MCM-41[J]. International Journal of Molecular Sciences, 2021, 22(12): 6540. |
65 | XU Yusheng, HU Enzheng, XU Dongyan, et al. Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B[J]. Separation and Purification Technology, 2021, 274: 119081. |
66 | ABUKHADRA M R, SHABAN M. Recycling of different solid wastes in synthesis of high-order mesoporous silica as adsorbent for safranin dye[J]. International Journal of Environmental Science and Technology, 2019, 16(11): 7573-7582. |
67 | KHAN Afzal Husain, LÓPEZ-MALDONADO Eduardo Alberto, ALAM Shah Saud, et al. Municipal solid waste generation and the current state of waste-to-energy potential: State of art review[J]. Energy Conversion and Management, 2022, 267: 115905. |
68 | DENG Yanxi, XU Xiaodong, WANG Rong, et al. Characterization and photocatalytic evaluation of Fe-loaded mesoporous MCM-41 prepared using iron and silicon sources extracted from iron ore tailing[J]. Waste and Biomass Valorization, 2020, 11(4): 1491-1498. |
69 | QIANG Zhiqin, SHEN Xianjiang, GUO Min, et al. A simple hydrothermal synthesis of zeolite X from bauxite tailings for highly efficient adsorbing CO2 at room temperature[J]. Microporous and Mesoporous Materials, 2019, 287: 77-84. |
70 | MORI Yutaka, PINNAVAIA Thomas J. Optimizing organic functionality in mesostructured silica: Direct assembly of mercaptopropyl groups in wormhole framework structures[J]. Chemistry of Materials, 2001, 13(6): 2173-2178. |
71 | COSTA José Arnaldo S, DE JESUS Roberta A, SANTOS Danilo O, et al. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259. |
72 | ANDRADE Gracielle Ferreira, SOARES Daniel Cristian Ferreira, DE SOUSA ALMEIDA Ramon Kenned, et al. Mesoporous silica SBA-16 functionalized with alkoxysilane groups: Preparation, characterization, and release profile study[J]. Journal of Nanomaterials, 2012, 2012: 816496. |
73 | 吴冰峰, 杨丽娜, 李剑, 等. 生物质模板剂制备介孔材料研究进展[J]. 化工进展, 2018, 37(7): 2686-2693. |
WU Bingfeng, YANG Lina, LI Jian, et al. Application of biomass templates in the preparation of mesoporous materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2686-2693. | |
74 | CANLAS Christian P, PINNAVAIA Thomas J. Bio-derived oleylsurfactants as porogens for the sustainable synthesis of micelle-templated mesoporous silica[J]. RSC Advances, 2012, 2(19): 7449-7455. |
75 | BJÖRK Emma M, Peter MÄKIE, Lina ROGSTRÖM, et al. Formation of block-copolymer-templated mesoporous silica[J]. Journal of Colloid and Interface Science, 2018, 521: 183-189. |
76 | ZHANG Siqian, RAVI Seenu, LEE Yuri, et al. Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 241-249. |
77 | LASMI Sofiane, ZOUKRAMI Fouzia, MARCOS-FERNÁNDEZ Ángel Antonio, et al. Influence of modified mesoporous silica SBA-15 and compatibilizer on the properties and structure of ethylene-vinyl acetate copolymer-based nanocomposites[J]. Polymer-Plastics Technology and Materials, 2020, 59(18): 2003-2017. |
78 | MEOTO Silo, KENT Niall, NIGRA Michael M, et al. Effect of stirring rate on the morphology of FDU-12 mesoporous silica particles[J]. Microporous and Mesoporous Materials, 2017, 249: 61-66. |
79 | LI Dandan, MIN Hongyang, JIANG Xu, et al. One-pot synthesis of aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption[J]. Journal of Colloid and Interface Science, 2013, 404: 42-48. |
80 | RAJALAKSHMI Rajamanickam, SRINIVASAN Vinju Vasudevan, PACHAMUTHU Muthusamy P, et al. Characterizations of tin (SnO2) doped KIT-5 by direct synthesis[J]. Materials Chemistry and Physics, 2015, 154: 164-169. |
81 | Dolores GARRIDO M, HASKOURI Jamal EL, David VIE, et al. Generalized “one-pot” preparative strategy to obtain highly functionalized silica-based mesoporous spherical particles[J]. Microporous and Mesoporous Materials, 2022, 337: 111942. |
82 | ELÍAS Verónica R, FERRERO Gabriel O, OLIVEIRA Rafael G, et al. Improved stability in SBA-15 mesoporous materials as catalysts for photo-degradation processes[J]. Microporous and Mesoporous Materials, 2016, 236: 218-227. |
83 | FU Xingrui, LIU Yue, YAO Weiyuan, et al. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation[J]. Catalysis Communications, 2016, 83: 22-26. |
84 | YANG Piaoping, GAI Shili, LIN Jun. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chemical Society Reviews, 2012, 41(9): 3679-3698. |
85 | WU Zhangxiong, ZHAO Dongyuan. Ordered mesoporous materials as adsorbents[J]. Chemical Communications, 2011, 47(12): 3332-3338. |
86 | ZHAO Lingyu, ZHU Qingyun, MAO Li, et al. Preparation of thiol- and amine-bifunctionalized hybrid monolithic column via “one-pot” and applications in speciation of inorganic arsenic[J]. Talanta, 2019, 192: 339-346. |
87 | ZHAO Hongwei, HAN Hui. Synthesis and characterization of functionalized SBA-15 silica through template removal[J]. Journal of Solid State Chemistry, 2020, 282: 121074. |
88 | AHMED Sohail, RAMLI Anita, YUSUP Suzana. Development of polyethylenimine-functionalized mesoporous Si-MCM-41 for CO2 adsorption[J]. Fuel Processing Technology, 2017, 167: 622-630. |
89 | XU Xiang, HE Junjie, ZENG Yanning, et al. Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching[J]. European Polymer Journal, 2020, 131: 109724. |
90 | LIU Yan, CHEN Rui, YUAN Dandan, et al. Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr(Ⅱ) from aqueous solution[J]. Colloid and Polymer Science, 2015, 293(1): 109-123. |
91 | Joanna DOBRZYŃSKA, Marzena DĄBROWSKA, OLCHOWSKI Rafał, et al. An ion-imprinted thiocyanato-functionalized mesoporous silica for preconcentration of gold(Ⅲ) prior to its quantitation by slurry sampling graphite furnace AAS[J]. Microchimica Acta, 2018, 185(12): 564. |
92 | YANG Sen, QIAN Jun, KUANG Liangju, et al. Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29337-29344. |
93 | GLOTOV Aleksandr, LEVSHAKOV Nikolay, STAVITSKAYA Anna, et al. Templated self-assembly of ordered mesoporous silica on clay nanotubes[J]. Chemical Communications, 2019, 55(38): 5507-5510. |
94 | GAO Li, SHI Zhiyuan, ETIM Ubong Jerome, et al. Superior catalytic performance of micro-mesoporous Beta-SBA-15 composite with a high indexed isomerization factor in hydroisomerization of n-heptane[J]. Fuel, 2019, 252: 653-665. |
95 | MARTIN Pedro, RAFTI Matías, MARCHETTI Sergio, et al. MCM-41-based composite with enhanced stability for Cr(Ⅵ) removal from aqueous media[J]. Solid State Sciences, 2020, 106: 106300. |
96 | SUN Chunyan, ZHANG Feng, WANG Xiao, et al. Facile preparation of ammonium molybdophosphate/Al-MCM-41 composite material from natural clay and its use in cesium ion adsorption[J]. European Journal of Inorganic Chemistry, 2015, 2015(12): 2125-2131. |
97 | CHEN Feiyun, HONG Mingzhu, YOU Weijie, et al. Simultaneous efficient adsorption of Pb2+ and MnO4 - ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride[J]. Applied Surface Science, 2015, 357: 856-865. |
98 | GUPTA Radha, GUPTA Sunil Kumar, PATHAK Devendra Deo. Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 288: 109577. |
99 | BETIHA M A, MOUSTAFA Y M, EL-SHAHAT M F, et al. Polyvinylpyrrolidone-aminopropyl-SBA-15 schiff base hybrid for efficient removal of divalent heavy metal cations from wastewater[J]. Journal of Hazardous Materials, 2020, 397: 122675. |
100 | MORSI Rania E, ELSHERIEF Mohamed A, SHABAAN M, et al. Chitosan/MCM-41 nanocomposites for efficient beryllium separation[J]. Journal of Applied Polymer Science, 2018, 135(13): e46040. |
101 | SHAHAT Ahmed, HASSAN Hassan M A, EL-SHAHAT M F, et al. A ligand-anchored optical composite material for efficient vanadium(Ⅱ) adsorption and detection in wastewater[J]. New Journal of Chemistry, 2019, 43(26): 10324-10335. |
102 | HERMAN Petra, Krisztián MOLDOVÁN, PAUL Geo, et al. Selective and reversible surface complexation of aqueous palladium(Ⅱ) by polycarboxylate (pyromellitic acid) functionalized hybrid aerogel sorbent[J]. Applied Surface Science, 2023, 613: 156026. |
103 | SADEGHI Mohammad Mehdi, Ali Shokuhi RAD, ARDJMAND Mehdi, et al. Functionalization of SBA-15 by dithiooxamide towards removal of Co (Ⅱ) ions from real samples: Isotherm, thermodynamic and kinetic studies[J]. Advanced Powder Technology, 2019, 30(9): 1823-1834. |
104 | FISSAHA Hiluf T, TORREJOS Rey Eliseo C, KIM Hern, et al. Thia-crown ether functionalized mesoporous silica (SBA-15) adsorbent for selective recovery of gold (Au3+) ions from electronic waste leachate[J]. Microporous and Mesoporous Materials, 2020, 305: 110301. |
105 | LI Weibin, FU Fenglian. Incorporating MnFe2O4 onto the thiol-functionalized MCM-41 for effective capturing of Sb(Ⅲ) in aqueous media[J]. Microporous and Mesoporous Materials, 2020, 298: 110060. |
106 | ZHENG Xudong, LIU Enli, ZHANG Fusheng, et al. Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag[J]. Green Chemistry, 2016, 18(18): 5031-5040. |
107 | BARCZAK Mariusz, Joanna DOBRZYŃSKA, OSZUST Monika, et al. Synthesis and application of thiolated mesoporous silicas for sorption, preconcentration and determination of platinum[J]. Materials Chemistry and Physics, 2016, 181: 126-135. |
108 | GAO Jing, ZHANG Danyang, WANG Yuejiao, et al. Ethanolamine modified ordered mesoporous silica KIT-6: One-pot and rapid microwave synthesis, and efficient recovery for rhenium(Ⅶ)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130337. |
109 | PETROVA Petranka, CHOCHKOVA Maya, KARADJOV Metody. Adsorption of Pd(Ⅱ) in N and S-modified silica sorbents[J]. Journal of Chemical Technology and Metallurgy, 2022, 57(5): 962-970. |
110 | LEE Byunghwan, KIM Younghun, LEE Hyunjoo, et al. Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: The introduction of surface hydrophilicity onto the surface of adsorbents[J]. Microporous and Mesoporous Materials, 2001, 50(1): 77-90. |
111 | GE Shaobing, HE Xiaowei, ZHAO Jiawei, et al. Removal of cationic dyes, heavy metal ions, and CO2 capture by adsorption on mesoporous silica HMS[J]. Water, Air, & Soil Pollution, 2017, 228(12): 460. |
[1] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[2] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
[3] | BIAN Weibai, ZHANG Ruixuan, PAN Jianming. Research progress on preparation methods of inorganic metal lithium ion sieve materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4173-4186. |
[4] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[5] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[6] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[7] | SUN Xinru, ZHANG Qiuyi, ZHUO Jiankun, YANG Run, YAO Qiang. Research progress of CaCl2 composite thermochemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4506-4515. |
[8] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[9] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[10] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[11] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
[12] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[13] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[14] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[15] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |