Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3256-3267.DOI: 10.16085/j.issn.1000-6613.2023-0893
• Materials science and technology • Previous Articles
LIANG Ximei1(), FEI Hua1(), LI Yuanlin2, YONG Fan1, GUO Mengqian1, ZHOU Jiahong1
Received:
2023-05-30
Revised:
2023-08-20
Online:
2024-07-02
Published:
2024-06-15
Contact:
FEI Hua
梁西妹1(), 费华1(), 李元林2, 雍帆1, 郭梦倩1, 周嘉宏1
通讯作者:
费华
作者简介:
梁西妹(1999—),女,硕士研究生,研究方向为相变储能材料。E-mail:liangxm0114@163.com。
基金资助:
CLC Number:
LIANG Ximei, FEI Hua, LI Yuanlin, YONG Fan, GUO Mengqian, ZHOU Jiahong. Preparation and thermal properties of lauric acid-based binary low compatible energy storage materials[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3256-3267.
梁西妹, 费华, 李元林, 雍帆, 郭梦倩, 周嘉宏. 月桂酸基二元低共融储能材料的制备及热性能[J]. 化工进展, 2024, 43(6): 3256-3267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0893
相变材料 | 融化温度Tm/℃ | 融化焓ΔHm/J·g-1 | 凝固温度Tf/℃ | 步冷测试温度T′f/℃ | 凝固焓ΔHm/J·g-1 |
---|---|---|---|---|---|
LA | 43.68 | 179.32 | 38.30 | 41.57 | 182.05 |
PW | 54.24 | 193.08 | 52.22 | 51.31 | 195.33 |
CA | 29.33 | 160.35 | 28.60 | 29.52 | 162.09 |
LA-PW(75∶25) | 38.14 | 178.02 | 33.29 | 36.95 | 180.12 |
LA-PW(76∶24) | 37.45 | 186.90 | 32.11 | 35.21 | 182.95 |
LA-PW(77∶26) | 38.09 | 174.58 | 33.60 | 35.89 | 178.41 |
LA-CA(29∶71) | 17.84 | 127.69 | 16.52 | 17.93 | 128.65 |
LA-CA(30∶70) | 17.82 | 129.16 | 16.46 | 17.31 | 130.20 |
LA-CA(31∶69) | 17.83 | 129.19 | 16.47 | 17.86 | 130.72 |
相变材料 | 融化温度Tm/℃ | 融化焓ΔHm/J·g-1 | 凝固温度Tf/℃ | 步冷测试温度T′f/℃ | 凝固焓ΔHm/J·g-1 |
---|---|---|---|---|---|
LA | 43.68 | 179.32 | 38.30 | 41.57 | 182.05 |
PW | 54.24 | 193.08 | 52.22 | 51.31 | 195.33 |
CA | 29.33 | 160.35 | 28.60 | 29.52 | 162.09 |
LA-PW(75∶25) | 38.14 | 178.02 | 33.29 | 36.95 | 180.12 |
LA-PW(76∶24) | 37.45 | 186.90 | 32.11 | 35.21 | 182.95 |
LA-PW(77∶26) | 38.09 | 174.58 | 33.60 | 35.89 | 178.41 |
LA-CA(29∶71) | 17.84 | 127.69 | 16.52 | 17.93 | 128.65 |
LA-CA(30∶70) | 17.82 | 129.16 | 16.46 | 17.31 | 130.20 |
LA-CA(31∶69) | 17.83 | 129.19 | 16.47 | 17.86 | 130.72 |
1 | YUAN Yanping, GAO Xiangkui, WU Hongwei, et al. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development[J]. Energy, 2017, 119: 817-833. |
2 | CANTORE Nicola, Holger SCHLÖR, VOEGELE Stefan, et al. Inclusive and sustainable industrial development: Measurement approaches for energy transformation[J]. Applied Energy, 2021, 299: 117277. |
3 | HE Yan, ZHANG Xiong, ZHANG Yongjuan. Preparation technology of phase change perlite and performance research of phase change and temperature control mortar[J]. Energy and Buildings, 2014, 85: 506-514. |
4 | ZHAO Xinbo, LI Chuanchang, BAI Kaihao, et al. Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1419-1428. |
5 | FENG Yongchang, LI Huixiong, LI Liangxing, et al. Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 81: 415-425. |
6 | CASTELL A, MARTORELL I, MEDRANO M, et al. Experimental study of using PCM in brick constructive solutions for passive cooling[J]. Energy and Buildings, 2010, 42(4): 534-540. |
7 | LI Chuanchang, WANG Mengfan, CHEN Zhongsheng, et al. Enhanced thermal conductivity and photo-to-thermal performance of diatomite-based composite phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 34: 102171. |
8 | ZHANG Yuan, DENG Mengmeng. Taguchi optimization and a fast evaluation method on the transient thermal performance of phase change material outfitted walls[J]. Journal of Energy Storage, 2021, 43: 103120. |
9 | QIAO Xu, KONG Xiangfei, LI Han, et al. Performance and optimization of a novel active solar heating wall coupled with phase change material[J]. Journal of Cleaner Production, 2020, 250: 119470. |
10 | ALIM Mohammad A, TAO Zhong, ABDEN Md Jaynul, et al. Improving performance of solar roof tiles by incorporating phase change material[J]. Solar Energy, 2020, 207: 1308-1320. |
11 | LUO Zhuqing, LIU Xiaoming, YANG Qiguo, et al. Numerical study on performance of porous brick roof using phase change material with night ventilation[J]. Energy and Buildings, 2023, 286: 112972. |
12 | JI Wenhui, YUAN Yanping, LI Yajun, et al. Wall-attached night ventilation combined with phase change material wallboard in hot summer: An experimental study on the thermal performance[J]. Journal of Thermal Science, 2022, 31(2): 318-331. |
13 | RUDRA MURTHY B V, THANAIAH Kumara, GUMTAPURE Veershetty. Experimental investigation of shellac wax as potential bio-phase change material for medium temperature solar thermal energy storage applications[J]. Solar Energy, 2022, 231: 1002-1014. |
14 | WU Bo, ZHAO Yuanyang, LIU Qinfeng, et al. Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(4): 1225-1232. |
15 | PRINCIPI Paolo, FIORETTI Roberto. Thermal analysis of the application of pcm and low emissivity coating in hollow bricks[J]. Energy and Buildings, 2012, 51: 131-142. |
16 | YANG Li, CAO Xiaoling, ZHANG Nan, et al. Thermal reliability of typical fatty acids as phase change materials based on 10,000 accelerated thermal cycles[J]. Sustainable Cities and Society, 2019, 46: 101380. |
17 | ZHANG Nan, YUAN Yanping, YUAN Yaguang, et al. Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties[J]. Energy and Buildings, 2014, 82: 505-511. |
18 | LAOUER Abdelghani, Müslüm ARıCı, TEGGAR Mohamed, et al. Effect of magnetic field and nanoparticle concentration on melting of Cu-ice in a rectangular cavity under fluctuating temperatures[J]. Journal of Energy Storage, 2021, 36: 102421. |
19 | Mostafa MASOUMPOUR-SAMAKOUSH, MIANSARI Mehdi, AJAROSTAGHI Seyed Soheil Mousavi, et al. Impact of innovative fin combination of triangular and rectangular fins on melting process of phase change material in a cavity[J]. Journal of Energy Storage, 2022, 45: 103545. |
20 | 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256. |
DU Wenqing, FEI Hua, GU Qingjun, et al. Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 251-256. | |
21 | JOUHARA Hussam, Alina ŻABNIEŃSKA-GÓRA, KHORDEHGAH Navid, et al. Latent thermal energy storage technologies and applications: A review[J]. International Journal of Thermofluids, 2020, 5: 100039. |
22 | 蒋达华, 廖绍璠, 张鑫林, 等. 十八酸-十四酸二元相变材料的热性能研究[J]. 化工新型材料, 2020, 48(9): 141-144. |
JIANG Dahua, LIAO Shaofan, ZHANG Xinlin, et al. Study on thermal properties of octadecanoic acid-tetradecanoic acid binary phase change materials[J]. New Chemical Materials, 2020, 48(9): 141-144. | |
23 | FAN Zhixuan, ZHAO Yunchao, LIU Xuying, et al. Thermal properties and reliabilities of lauric acid-based binary eutectic fatty acid as a phase change material for building energy conservation[J]. ACS Omega, 2022, 7(18): 16097-16108. |
24 | ZHANG Shihua, ZHANG Xuelai, XU Xiaofeng, et al. Preparation and properties of decyl-myristyl alcohol/expanded graphite low temperature composite phase change material[J]. Phase Transitions, 2020, 93(5): 491-503. |
25 | LIU Lifang, CHEN Jiayu, QU Yue, et al. A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110038. |
26 | ZHANG Jianwu, GUAN Xuemao, SONG Xianxian, et al. Preparation and properties of gypsum based energy storage materials with capric acid-palmitic acid/expanded perlite composite PCM[J]. Energy and Buildings, 2015, 92: 155-160. |
27 | WEI Haiting, XIE Xiuzhen, LI Xiangqi, et al. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material[J]. Applied Energy, 2016, 178: 616-623. |
28 | 唐恒博, 武卫东, 苗朋柯, 等. 空调用二元有机相变蓄冷材料的理论预测与研究[J]. 化工新型材料, 2016, 44(3): 121-123, 126. |
TANG Hengbo, WU Weidong, MIAO Pengke, et al. Theoretical prediction and research on binary organic phase change cold storage materials for air conditioning[J]. New Chemical Materials, 2016, 44(3): 121-123, 126. | |
29 | HE Qian, FEI Hua, ZHOU Jiahong, et al. Preparation and characteristics of lauric acid-myristic acid-based ternary phase change materials for thermal storage[J]. Materials Today Communications, 2022, 32: 104058. |
30 | LI Min, WU Zhishen, Hongtao KAO. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy, 2011, 88(9): 3125-3132. |
31 | 乔从德, 杨文轲, 刘钦泽, 等. 差示扫描量热法在高分子物理实验教学中的应用[J]. 高分子通报, 2022(9): 81-85. |
QIAO Congde, YANG Wenke, LIU Qinze, et al. Application of differential scanning calorimetry in polymer physics experiments teaching[J]. Chinese Polymer Bulletin, 2022(9): 81-85. | |
32 | 付江辉, 郑丹星. 饱和一元脂肪醇类相变材料的蓄热特性[J]. 北京化工大学学报(自然科学版), 2004, 31(3): 18-21. |
FU Jianghui, ZHENG Danxing. Heat storage performance of phase change material of the saturated unitary alcohol[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2004, 31(3): 18-21. | |
33 | 王成君, 段志英, 王爱军, 等. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066 |
WANG Chengjun, DUAN Zhiying, WANG Aijun, et al. Research progress of eutectic phase change materials[J]. Materials Review, 2021, 35(13): 13058-13066. | |
34 | ZHAO Pin, YUE Qinyan, HE Hongtao, et al. Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions[J]. Applied Energy, 2014, 115: 483-490. |
35 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
ZHANG Yinping, SU Yuehong, GE Xinshi. Prediction of the melting temperature and the fusion heat of (quasi-) eutectic PCM[J]. Journal of China University of Science and Technology, 1995, 25(4): 474-478. | |
36 | ZHANG Long, DONG Jiankai. Experimental study on the thermal stability of a paraffin mixture with up to 10, 000 thermal cycles[J]. Thermal Science and Engineering Progress, 2017, 1: 78-87. |
[1] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
[2] | FANG Qiang, ZHAO Ming. Synergy of cooling system of liquid-cooled phase change material composite battery [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6278-6285. |
[3] | MA Yue, WANG Qinyan, JIN Yang. Esterification of free fatty acids in a twist plug-in microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6191-6196. |
[4] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
[5] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
[6] | YU Xinghai, TANG Haiwei, LI Yan’an, HAN Yuqi, MIN Xuemei. Electro- and photo-driven phase change composites based on stearic acid-infiltrated biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5936-5945. |
[7] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Qianshu LIU, Dawei XU. Preparation and performances of expanded graphite/organic matter composite phase change materials [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. |
[8] | Fang CHEN,Shugen LIU,Qunchao WANG,Yongfeng JIA,Ping NING. Process and characteristics of carbon source release from excess sludge via high temperature digestion [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3917-3924. |
[9] | WANG Weitao, LU Ping, MA Yangmin, LI Na, YANG Xiufang. Solid acid catalyst for the esterification of high free fatty acids of Zanthoxylum bungeanum seed oil [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2504-2510. |
[10] | LI Tao, JI Xiaojun, WU Na, ZONG Jiajun, HUANG He, YU Yadong. Progress on effects of metal ions on lipid accumulation of oleaginous microorganism [J]. Chemical Industry and Engineering Progree, 2016, 35(04): 1173-1179. |
[11] | SUN Meili, LIU Huhu, WU Wenjia, REN Lujing, HUANG He, JI Xiaojun. Metabolic engineering of yeast to produce polyunsaturated fatty acids [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 872-878. |
[12] | HUANG Xue1,3,CUI Yingde2,ZHANG Buning3,FENG Guangzhu3,YIN Guoqiang3 . Review on heat transfer and liquid phase leakage of fatty acids phase change materials [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2676-2680. |
[13] | GAO Peng,ZHANG Dong,JIA Shuting,DONG Bin,DAI Xiaohu. Research on bio-production of short-chain fatty acids from excess sludge during anaerobic digestion [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2227-2232. |
[14] | WANG Lin,DENG Tao,XU Junwei,ZHAO Peng,LI Tao,YU Xuya. Growth,metabolic and fatty acid composition of oleaginous Monoraphidium sp. FXY-10 under heterotrophic conditions [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1377-1381. |
[15] | HUANG Shuicheng, ZHENG Huidong, YANG Weiwei, WANG Sisi, ZHAO Suying, WU Yanxiang. Progress of branched-chain fatty acids preparation by isomerization of straight unsaturated fatty acids [J]. Chemical Industry and Engineering Progree, 2012, 31(11): 2454-2459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |