1 |
董静媚. 2022年钢铁行业形势分析与2023年展望[J]. 中国物价, 2023(2): 23-25.
|
|
DONG Jingmei. Situation analysis of steel industry in 2022 and prospect in 2023[J]. China Price, 2023(2): 23-25
|
2 |
REN Lei, ZHOU Sheng, Xunmin OU. The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113026.
|
3 |
高建军, 齐渊洪, 严定鎏, 等. 中国低碳炼铁技术的发展路径与关键技术问题[J]. 中国冶金, 2021, 31(9): 64-72.
|
|
GAO Jianjun, QI Yuanhong, YAN Dingliu, et al. Development path and key technical problems of low carbon ironmaking in China[J]. China Metallurgy, 2021, 31(9): 64-72.
|
4 |
LIU Zhengjian, ZHANG Jianliang, YANG Tianjun. Low carbon operation of super-large blast furnaces in China[J]. ISIJ International, 2015, 55(6): 1146-1156.
|
5 |
张生富, 尹铖, 邱淑兴, 等. 高反应性铁焦制备及其强度研究进展[J]. 洁净煤技术, 2022, 28(8): 133-144.
|
|
ZHANG Shengfu, YIN Cheng, QIU Shuxing, et al. Research progress on preparation and strength of high reactivity Ferro coke[J]. Clean Coal Technology, 2022, 28(8): 133-144.
|
6 |
石振晶. 煤热解焦油析出特性和深加工试验研究[D]. 杭州: 浙江大学, 2014.
|
|
SHI Zhenjing. Research on formation of tar during coal pyrolysis and deep processing of tar[D]. Hangzhou: Zhejiang University, 2014.
|
7 |
申岩峰. 高硫煤配煤炼焦硫分定向调控及成焦过程研究[D]. 太原: 太原理工大学, 2020.
|
|
SHEN Yanfeng. Investigation on directional regulation of sulfur and coking process during coal-blending coking of high-sulfur coal[D]. Taiyuan: Taiyuan University of Technology, 2020.
|
8 |
成春生, 申岩峰, 郭江, 等. 气煤分选组分的结构差异及其对高硫煤热解硫变迁的影响[J]. 燃料化学学报, 2021, 49(9): 1219-1230.
|
|
CHENG Chunsheng, SHEN Yanfeng, GUO Jiang, et al. Structural difference of gas coal separation components and its effect on sulfur transformation during pyrolysis of high sulfur coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1219-1230.
|
9 |
NOMURA Seiji. The effect of binder (coal tar and pitch) on coking pressure[J]. Fuel, 2018, 220: 810-816.
|
10 |
NOMURA Seiji, ARIMA Takashi. Influence of binder (coal tar and pitch) addition on coal caking property and coke strength[J]. Fuel Processing Technology, 2017, 159: 369-375.
|
11 |
乔卉莹. 废橡胶作配煤炼焦添加剂的机制研究[D]. 徐州: 中国矿业大学, 2020.
|
|
QIAO Huiying. Study on mechanism of waste rubber as coking additive in coal blending[D].Xuzhou: China University of Mining and Technology, 2020.
|
12 |
CHEN Zhihui, WU Youqing, HUANG Sheng, et al. Coking behavior and mechanism of direct coal liquefaction residue in coking of coal blending[J]. Fuel, 2020, 280: 118488.
|
13 |
NOMURA S. The effect of plastic addition on coal caking properties during carbonization[J]. Fuel, 2003, 82(14): 1775-1782.
|
14 |
KIM Gyeong-Min, LISANDY Kevin Yohanes, ISWORO Yanuar Yudhi, et al. Investigation into the effects of ash-free coal binder and torrefied biomass addition on coke strength and reactivity[J]. Fuel, 2018, 212: 487-497.
|
15 |
LI Xian, ASHIDA Ryuichi, MIURA Kouichi. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy & Fuels, 2012, 26(11): 6897-6904.
|
16 |
WANNAPEERA Janewit, LI Xian, WORASUWANNARAK Nakorn, et al. Production of high-grade carbonaceous materials and fuel having similar chemical and physical properties from various types of biomass by degradative solvent extraction[J]. Energy & Fuels, 2012, 26(7): 4521-4531.
|
17 |
ZHU Xianqing, LI Xian, XIAO Li, et al. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making[J]. Bioresource Technology, 2016, 207: 85-91.
|
18 |
赵骏. 超精煤制备及其在炼焦中应用基础研究[D]. 北京: 北京科技大学, 2020.
|
|
ZHAO Jun. Fundamental research on the preparation and coking application of HPC[D]. Beijing: University of Science and Technology Beijing, 2020.
|
19 |
SHUI Hengfu, HE Fang, WU Ye, et al. Study on the use of the thermal dissolution soluble fraction from Shenfu sub-bituminous coal in coke-making coal blends[J]. Energy & Fuels, 2015, 29(3): 1558-1563.
|
20 |
OKUYAMA Noriyuki, KOMATSU Nobuyuki, SHIGEHISA Takuo, et al. Hyper-coal process to produce the ash-free coal[J]. Fuel Processing Technology, 2004, 85(8/9/10): 947-967.
|
21 |
郭柱,李显,李致煜,等. 低阶煤的热溶萃取提质研究进展[J]. 煤炭科学技术. 2023, 51(6): 286-303.
|
|
GUO Zhu, LI Xian, LI Zhiyu, et al. Reaearch progress on degradative solvent extraction of low-rank coals[J]. Coal Scoience and Technology, 2023, 51(6): 286-303.
|
22 |
李致煜, 郭柱, 李显, 等. 生物质“热溶富碳” 及其产物利用[J]. 燃料化学学报(中英文), 2023(2): 129-144.
|
|
LI Zhiyu, GUO Zhu, LI Xian, et al. “Thermal dissolution based carbon enrichment” of biomass waste and the product utilization[J]. Journal of Fuel Chemistry and Technology, 2023(2): 129-144.
|
23 |
王帅. 炼焦煤分析及焦炭质量预测的研究[D]. 马鞍山: 安徽工业大学, 2018.
|
|
WANG Shuai. Coking coals analysis and research on coke quality prediction[D]. Maanshan: Anhui University of technology, 2018.
|
24 |
LIU Xianzhe, HU Zhenzhong, HU Dawei, et al. Degradative solvent extraction of low rank coal: Structural evolution of extraction products[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106290.
|
25 |
JAYASEKARA Apsara S, BROOKS Brody, STEEL Karen, et al. Microalgae blending for sustainable metallurgical coke production—Impacts on coking behaviour and coke quality[J]. Fuel, 2023, 344: 128130.
|
26 |
BARRIOCANAL C, Dı́EZ M A, ALVAREZ R, et al. On the relationship between coal plasticity and thermogravimetric analysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(1): 23-40.
|
27 |
张林杨. 快速预热对典型炼焦煤及其焦炭性质的影响研究[D]. 北京: 北京科技大学, 2023.
|
|
ZHANG Linyang. Effect of rapid preheating on properties of typical coking coals and obtained coke[D]. Beijing: University of Science and Technology Beijing, 2023.
|
28 |
闫立东. 海拉尔褐煤热解萃取物的结构解析及应用基础研究[D]. 鞍山: 辽宁科技大学, 2023.
|
|
YAN Lidong. Research on the structure analysis and application of Hailaer brown coal pyrolytic extract[D]. Anshan: University of Science and Technology Liaoning, 2023.
|