Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2324-2342.DOI: 10.16085/j.issn.1000-6613.2023-1945
• Clean and efficient utilization of fossil energy • Previous Articles
GAO Fanxiang1(), LIU Yang1, ZHANG Guiquan2, QIN Feng3, YAO Jiantao2, JIN Hui1, SHI Jinwen1()
Received:
2023-11-06
Revised:
2024-03-14
Online:
2024-06-15
Published:
2024-05-15
Contact:
SHI Jinwen
高凡翔1(), 刘阳1, 张贵泉2, 秦锋3, 姚建涛2, 金辉1, 师进文1()
通讯作者:
师进文
作者简介:
高凡翔(2000—),男,硕士研究生,研究方向为碳捕集和利用。E-mail:gfx2284217583@stu.xjtu.edu.cn。
基金资助:
CLC Number:
GAO Fanxiang, LIU Yang, ZHANG Guiquan, QIN Feng, YAO Jiantao, JIN Hui, SHI Jinwen. Research progress of wet process synergistic desulfurization and decarbonization technology for coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2324-2342.
高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1945
改造类型 | 改造项目或地点 | 改造方案 | SO2排放浓度(标准)/mg·m-3 | 脱硫效率/% | 完工时间 /年 | ||
---|---|---|---|---|---|---|---|
改造前 | 改造后 | 改造前 | 改造后 | ||||
喷淋层 | 攀枝花某企业小型锅炉[ | 增设一层冲洗水层,缩短喷嘴与除雾器间距,优化冲洗水管及相关配套设施等 | 78~126 | 98.5~99.0 | 2016 | ||
魏家峁电厂[ | 采用一层旋流和三层喷淋,增加每层喷淋喷嘴数等 | 130 | <23 | >95 | >99 | 2017 | |
托盘塔 | 某660MW超临界燃煤 机组[ | 采用双托盘,拆除回转式烟气换热器(GGH),增加液气比等 | 111 | <35 | 91.5~92.5 | 2012 | |
华能集团滇东电厂3号和4号机组[ | 采用双托盘,增设喷淋层,拆除GGH,布置3级高效屋脊式除雾器及冲洗水系统等 | — | <35 | — | — | 2018 | |
单塔双区 | 某公司二期630MW电厂[ | 对吸收塔两段环切加高,优化改进配套设备等 | 100 | 96 | 2018 | ||
单塔双循环 | 山西某超低排放项目[ | 升级原塔,新建塔外循环塔和配套的浆液循环泵等 | <35 | 2015 | |||
某1000MW燃煤电厂[ | 拆除原塔并建新塔和一座循环浆液槽 | 100~175 | 95 | 2016 | |||
双塔双循环 | 大唐集团河北某600MW发电厂[ | 新建一级吸收塔与原吸收塔(二级)串联 | 110~170 | <35 | 95 | >99 | 2014 |
国电谏壁发电厂8号机组[ | 利用7号机组旧塔与8号机组旧塔组合形成双塔双循环 | >50 | 22.43 | 95 | >99.3 | 2014 | |
任丘2×300MW燃煤电厂[ | 新建二级吸收塔与原吸收塔(一级)串联 | 163.49 | 20.65 | 93.07 | 99.47 | 2018 | |
某350MW燃煤电厂[ | 新建二级吸收塔与原吸收塔(一级)串联 | 107 | 27 | 96.5 | 99.3 | 2018 | |
华能集团滇东电厂1号和2号机组[ | 新建二级吸收塔与原吸收塔(一级)串联 | <35 | — | 99.53 | 2018 | ||
其他 | 宁夏某2×350MW燃煤 电厂[ | 增大塔壁板高度,增加喷淋层,扩大浆池容积等 | >50 | 35 | >98.675 | >99.08 | 2020 |
某3×50MW抽凝式发电 机组[ | 新建塔形成“一炉一塔”,原塔新增脱硫增效协同除尘设置,改用三级屋脊式高效除雾器及冲洗水系统等 | 89.6 | 9.7 | — | 98.8~99.7 | 2022 | |
某2×600MW燃煤电厂[ | 新增浆液再循环装置,差异化布置喷嘴,升级除雾器等 | > 45 | <35 | — | >95 | 2022 | |
兰州石化公司燃煤锅炉[ | 新建塔形成“一炉一塔”,原塔喷淋层增设湍流器和偏转环 | — | 99 | 2023 |
改造类型 | 改造项目或地点 | 改造方案 | SO2排放浓度(标准)/mg·m-3 | 脱硫效率/% | 完工时间 /年 | ||
---|---|---|---|---|---|---|---|
改造前 | 改造后 | 改造前 | 改造后 | ||||
喷淋层 | 攀枝花某企业小型锅炉[ | 增设一层冲洗水层,缩短喷嘴与除雾器间距,优化冲洗水管及相关配套设施等 | 78~126 | 98.5~99.0 | 2016 | ||
魏家峁电厂[ | 采用一层旋流和三层喷淋,增加每层喷淋喷嘴数等 | 130 | <23 | >95 | >99 | 2017 | |
托盘塔 | 某660MW超临界燃煤 机组[ | 采用双托盘,拆除回转式烟气换热器(GGH),增加液气比等 | 111 | <35 | 91.5~92.5 | 2012 | |
华能集团滇东电厂3号和4号机组[ | 采用双托盘,增设喷淋层,拆除GGH,布置3级高效屋脊式除雾器及冲洗水系统等 | — | <35 | — | — | 2018 | |
单塔双区 | 某公司二期630MW电厂[ | 对吸收塔两段环切加高,优化改进配套设备等 | 100 | 96 | 2018 | ||
单塔双循环 | 山西某超低排放项目[ | 升级原塔,新建塔外循环塔和配套的浆液循环泵等 | <35 | 2015 | |||
某1000MW燃煤电厂[ | 拆除原塔并建新塔和一座循环浆液槽 | 100~175 | 95 | 2016 | |||
双塔双循环 | 大唐集团河北某600MW发电厂[ | 新建一级吸收塔与原吸收塔(二级)串联 | 110~170 | <35 | 95 | >99 | 2014 |
国电谏壁发电厂8号机组[ | 利用7号机组旧塔与8号机组旧塔组合形成双塔双循环 | >50 | 22.43 | 95 | >99.3 | 2014 | |
任丘2×300MW燃煤电厂[ | 新建二级吸收塔与原吸收塔(一级)串联 | 163.49 | 20.65 | 93.07 | 99.47 | 2018 | |
某350MW燃煤电厂[ | 新建二级吸收塔与原吸收塔(一级)串联 | 107 | 27 | 96.5 | 99.3 | 2018 | |
华能集团滇东电厂1号和2号机组[ | 新建二级吸收塔与原吸收塔(一级)串联 | <35 | — | 99.53 | 2018 | ||
其他 | 宁夏某2×350MW燃煤 电厂[ | 增大塔壁板高度,增加喷淋层,扩大浆池容积等 | >50 | 35 | >98.675 | >99.08 | 2020 |
某3×50MW抽凝式发电 机组[ | 新建塔形成“一炉一塔”,原塔新增脱硫增效协同除尘设置,改用三级屋脊式高效除雾器及冲洗水系统等 | 89.6 | 9.7 | — | 98.8~99.7 | 2022 | |
某2×600MW燃煤电厂[ | 新增浆液再循环装置,差异化布置喷嘴,升级除雾器等 | > 45 | <35 | — | >95 | 2022 | |
兰州石化公司燃煤锅炉[ | 新建塔形成“一炉一塔”,原塔喷淋层增设湍流器和偏转环 | — | 99 | 2023 |
地点 | 名称 | 规模 | 溶剂类型 | 能耗/GJ·t-1 | 时间/年 |
---|---|---|---|---|---|
美国 | Warrior Run示范项目 | 150t/d | MEA | — | 2000 |
Petro Nova碳捕集项目 | 1.4×106t/a | KS-1 | 2.4 | 2017 | |
德国 | Staudinger电站中试项目 | — | 氨基酸 | 2.7 | 2009 |
Wilhelmshaven电站中试项目 | 70t/d | 二甘醇胺 | 2.7 | 2012 | |
加拿大 | Boundary Dam项目 | 1×106t/a | MEA | — | 2014 |
澳大利亚 | Hazelwood电站中试项目 | 1t/d | 碳酸钾 | 2.5 | 2011 |
中国 | 华能北京热电厂中试项目 | 3000t/a | MEA | — | 2008 |
华能上海石洞口示范项目 | 1.2×105t/a | MEA | 3 | 2009 | |
胜利发电厂100t/a CO2捕集纯化工程 | 100t/d | 新型MSA复合吸收剂 | 5.95 | 2012 | |
长春热电厂相变型碳捕集工业装置 | 1000t/a | 相变吸收剂 | 2.3 | 2020 | |
国能锦界1.5×105t/a CCUS示范项目 | 1.5×105t/a | 复合胺(多氨基胺及位阻胺) | 2.4 | 2021 | |
齐鲁石化-胜利油田百万吨级CCUS项目 | 1t/a | 新型MSA复合吸收剂 | — | 2022 |
地点 | 名称 | 规模 | 溶剂类型 | 能耗/GJ·t-1 | 时间/年 |
---|---|---|---|---|---|
美国 | Warrior Run示范项目 | 150t/d | MEA | — | 2000 |
Petro Nova碳捕集项目 | 1.4×106t/a | KS-1 | 2.4 | 2017 | |
德国 | Staudinger电站中试项目 | — | 氨基酸 | 2.7 | 2009 |
Wilhelmshaven电站中试项目 | 70t/d | 二甘醇胺 | 2.7 | 2012 | |
加拿大 | Boundary Dam项目 | 1×106t/a | MEA | — | 2014 |
澳大利亚 | Hazelwood电站中试项目 | 1t/d | 碳酸钾 | 2.5 | 2011 |
中国 | 华能北京热电厂中试项目 | 3000t/a | MEA | — | 2008 |
华能上海石洞口示范项目 | 1.2×105t/a | MEA | 3 | 2009 | |
胜利发电厂100t/a CO2捕集纯化工程 | 100t/d | 新型MSA复合吸收剂 | 5.95 | 2012 | |
长春热电厂相变型碳捕集工业装置 | 1000t/a | 相变吸收剂 | 2.3 | 2020 | |
国能锦界1.5×105t/a CCUS示范项目 | 1.5×105t/a | 复合胺(多氨基胺及位阻胺) | 2.4 | 2021 | |
齐鲁石化-胜利油田百万吨级CCUS项目 | 1t/a | 新型MSA复合吸收剂 | — | 2022 |
技术类型 | 优点 | 缺点 |
---|---|---|
梯级脱硫脱碳技术 | 1.技术成熟,工程经验丰富 | 1.占地空间大,不易维护 |
2.易于在已有电站改造(无论是否有FGD系统) | 2.能耗高 | |
3.脱硫和脱碳系统便于各自调控实现高脱除率 | 3.烟气成分对脱碳剂的影响大 | |
联合脱硫脱碳技术 | 1.节能潜力大 | 1.技术不成熟,工程经验极少 |
2.占地空间小,运行维护方便 | 2.不适合已有FGD系统的电站改造 | |
3.单一吸收剂的用量更大,使吸收效率受影响,设备更易腐蚀、胺损耗更严重等 |
技术类型 | 优点 | 缺点 |
---|---|---|
梯级脱硫脱碳技术 | 1.技术成熟,工程经验丰富 | 1.占地空间大,不易维护 |
2.易于在已有电站改造(无论是否有FGD系统) | 2.能耗高 | |
3.脱硫和脱碳系统便于各自调控实现高脱除率 | 3.烟气成分对脱碳剂的影响大 | |
联合脱硫脱碳技术 | 1.节能潜力大 | 1.技术不成熟,工程经验极少 |
2.占地空间小,运行维护方便 | 2.不适合已有FGD系统的电站改造 | |
3.单一吸收剂的用量更大,使吸收效率受影响,设备更易腐蚀、胺损耗更严重等 |
1 | HAO Yu, WANG Lingou, FAN Weiyang, et al. What determines China’s electricity consumption? New evidence using the logarithmic mean Divisia index method[J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 015909. |
2 | LIN Boqiang, OMOJU Oluwasola E, OKONKWO Jennifer U. Factors influencing renewable electricity consumption in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 687-696. |
3 | 中华人民共和国国家统计局. 中国第三产业统计年鉴-2012[M]. 北京: 中国统计出版社, 2012. |
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook of the tertiary industry[M]. Beijing: China Statistics Press, 2012. | |
4 | 顾晨, 赵瑜. 中国燃煤电厂大气污染物排放研究进展[J]. 煤炭学报, 2022, 47(12): 4352-4361. |
GU Chen, ZHAO Yu. Research progress of air pollutant emissions of Chinese coal-fired power plants[J]. Journal of China Coal Society, 2022, 47(12): 4352-4361. | |
5 | 国家能源局西北监管局. 2022年我国煤炭消费量占能源消费总量56.2%[EB/OL]. (2023-03-28) [2023-12-23]. . |
Northwest Supervision Bureau of the National Energy Administration. China’s coal consumption accounts for 56.2% of total energy consumption in 2022[EB/OL]. (2023-03-28) [2023-12-23]. . | |
6 | GUO Yiqi, ZHU Lisha, WANG Xiaopeng, et al. Assessing environmental impact of NO x and SO2 emissions in textiles production with chemical footprint[J]. Science of the Total Environment, 2022, 831: 154961. |
7 | FANG Mengxiang, YI Ningtong, DI Wentao, et al. Emission and control of flue gas pollutants in CO2 chemical absorption system—A review[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102904. |
8 | 武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374. |
WU Chunjin, Wuhua LYU, MEI Yi, et al. Application and running economic analysis of wet flue gas desulfurization technology[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4368-4374. | |
9 | 温翯, 韩伟, 车春霞, 等. 燃烧后二氧化碳捕集技术与应用进展[J]. 精细化工, 2022, 39(8): 1584-1595, 1632. |
WEN He, HAN Wei, CHE Chunxia, et al. Progress of post-combustion carbon dioxide capture technology development and applications[J]. Fine Chemicals, 2022, 39(8): 1584-1595, 1632. | |
10 | 王军锋, 李金, 徐惠斌, 等. 湿法脱硫协同去除细颗粒物的研究进展[J]. 化工进展, 2019, 38(7): 3402-3411. |
WANG Junfeng, LI Jin, XU Huibin, et al. Advances in research on wet desulfurization and synergistic removal of fine particles[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3402-3411. | |
11 | WANG Zhiping, Liyong LUN, TAN Zhongchao, et al. Simultaneous wet desulfurization and denitration by an oxidant absorbent of NaClO2/CaO2 [J]. Environmental Science and Pollution Research, 2019, 26(28): 29032-29040. |
12 | DESHWAL Bal Raj, LEE Si Hyun, JUNG Jong Hyeon, et al. Study on the removal of NO x from simulated flue gas using acidic NaClO2 solution[J]. Journal of Environmental Sciences, 2008, 20(1): 33-38. |
13 | 王大淇, 赵兵涛, 张梓均, 等. 氧化吸收法同步脱除燃烧烟气中SO2, NO x 和CO2的化学热力学及其评价[J]. 上海理工大学学报, 2019, 41(2): 130-136. |
WANG Daqi, ZHAO Bingtao, ZHANG Zijun, et al. Thermodynamics and assessment of simultaneous removal of SO2, NO x and CO2 from combustion flue gas by oxidation-absorption method[J]. Journal of University of Shanghai for Science and Technology, 2019, 41(2): 130-136. | |
14 | WU Ye, CHEN Xiaoping. The negative effects of SO2 on CO2 capture with K2CO3/Al2O3 [J]. Journal of Thermal Analysis and Calorimetry, 2015, 122(2): 1041-1049. |
15 | COPPOLA Antonio, ESPOSITO Alessandro, MONTAGNARO Fabio, et al. The combined effect of H2O and SO2 on CO2 uptake and sorbent attrition during fluidised bed calcium looping[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4379-4387. |
16 | KIM Chaehoon, CHOI Woosung, CHOI Minkee. SO2-resistant amine-containing CO2 adsorbent with a surface protection layer[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16586-16593. |
17 | GAO Jubao, WANG Shujuan, WANG Jian, et al. Effect of SO2 on the amine-based CO2 capture solvent and improvement using ion exchange resins[J]. International Journal of Greenhouse Gas Control, 2015, 37: 38-45. |
18 | 张成芳. 醇胺溶液吸收硫化氢和二氧化碳 第二部分 同时吸收和吸收的选择性[J]. 石油与天然气化工, 1984, 13(6): 10-19. |
ZHANG Chengfang. Selectivity of simultaneous absorption and absorption of the second part of hydrogen sulfide and carbon dioxide absorbed by ethanolamine solution[J]. Chemical Engineering of Oil & Gas, 1984, 13(6): 10-19. | |
19 | NOLAN Paul S. Combined flue gas desulfurization and carbon dioxide removal system: US6399030 [P]. 2002-06-04. |
20 | CIFERNO Jared, P, SKONE Timothy, J, RAMEZAN Massood. Carbon capture at an existing power plant[J]. Power Engineering, 2008, 112(5): 68-69. |
21 | COUSINS Ashleigh, PEARSON Pauline, PUXTY Graeme, et al. Simulating combined SO2 and CO2 capture from combustion flue gas[J]. Greenhouse Gases: Science and Technology, 2019, 9(6): 1087-1095. |
22 | 联合国. 联合国气候变化框架公约京都议定书[R]. (1997-12-11) [2023-12-24]. https://unfccc.int/documents/2409. |
United Nations. Kyoto protocol to the united nations framework convention on climate change[R]. (1997-12-11) [2023-12-24]. https://unfccc.int/documents/2409. | |
23 | 闫静, 吴晓清, 罗志云, 等. 国外大气污染防治现状综述[J]. 中国环保产业, 2016(2): 56-60. |
YAN Jing, WU Xiaoqing, LUO Zhiyun, et al. Review of air pollution prevention and control status in foreign countries[J]. China Environmental Protection Industry, 2016(2): 56-60. | |
24 | 张萍, 潘卫国, 郭瑞堂, 等. 燃煤烟气污染物协同控制技术的研究进展[J]. 应用化工, 2017, 46(12): 2447-2450. |
ZHANG Ping, PAN Weiguo, GUO Ruitang, et al. Advances in pollutants collaborative control technologies from coal-fired flue gas[J]. Applied Chemical Industry, 2017, 46(12): 2447-2450. | |
25 | 乔二浪, 乔林艳, 王有斌, 等. 浅析烟气脱硫工艺的优劣性[J]. 江西化工, 2022, 38(1): 92-94. |
QIAO Erlang, QIAO Linyan, WANG Youbin, et al. A brief analysis of the advantages and disadvantages of the flue gas desulfurization process[J]. Jiangxi Chemical Industry, 2022, 38(1): 92-94. | |
26 | WANG William, RAMKUMAR Shwetha, LI Songgeng, et al. Subpilot demonstration of the carbonation-calcination reaction (CCR) process: High-temperature CO2 and sulfur capture from coal-fired power plants[J]. Industrial and Engineering Chemistry Research, 2010, 49(11): 5094-5101. |
27 | 刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1-13. |
LIU Fei, GUAN Jian, QI Zhifu, et al. Technology route selection for carbon capture utilization and storage in coal-fired power plants[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 1-13. | |
28 | WANG Meihong, JOEL Atuman S, RAMSHAW Colin, et al. Process intensification for post-combustion CO2 capture with chemical absorption: A critical review[J]. Applied Energy, 2015, 158: 275-291. |
29 | MISIAK Katarzyna, SANCHEZ Cristina Sanchez, Peter VAN OS, et al. Next generation post-combustion capture: Combined CO2 and SO2 removal[J]. Energy Procedia, 2013, 37: 1150-1159. |
30 | 张琳, 瞿如敏, 王霞, 等. SO2对膜吸收法捕集烟气中CO2的影响[J]. 中国电机工程学报, 2015, 35(12): 3047-3053. |
ZHANG Lin, QU Rumin, WANG Xia, et al. Experimental study on the effect of SO2 on the absorption of CO2 by membranes[J]. Proceedings of the CSEE, 2015, 35(12): 3047-3053. | |
31 | 陆诗建, 耿春香, 赵东亚, 等. 基于AEEA的二元复合胺试剂吸收CO2降解性能研究[J]. 高校化学工程学报, 2017, 31(6): 1442-1451. |
LU Shijian, GENG Chunxiang, ZHAO Dongya, et al. Study on the degradation of AEEA based mixed amines in CO2 absorption[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1442-1451. | |
32 | 雷轩邈, 王甫, 朱先会, 等. 胺法碳捕集胺的降解与抑制方式的研究进展[J]. 高校化学工程学报, 2021, 35(6): 966-978. |
LEI Xuanmiao, WANG Fu, ZHU Xianhui, et al. Review on degradation and inhibition of amine from amine carbon capture processes[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(6): 966-978. | |
33 | YAMADA Mutsuo, MURAKAMI Kazumi, Naoki ODA, et al. CO2 removal technology from flue gases containing SO2 at thermal power plants[J]. Journal of the Japan Institute of Energy, 1996, 75(8): 732-741. |
34 | WILSON M, TONTIWACHWUTHIKUL P, CHAKMA A, et al. Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station[J]. Energy, 2004, 29(9/10): 1259-1267. |
35 | KNUDSEN Jacob N, JENSEN Jørgen N, VILHELMSEN Poul-Jacob, et al. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents[J]. Energy Procedia, 2009, 1(1): 783-790. |
36 | SHAW Devin. Cansolv CO2 capture: The value of integration[J]. Energy Procedia, 2009, 1(1): 237-246. |
37 | GAO Jubao, WANG Shujuan, ZHAO Bo, et al. Pilot-scale experimental study on the CO2 capture process with existing of SO2: Degradation, reaction rate, and mass transfer[J]. Energy & Fuels, 2011, 25(12): 5802-5809. |
38 | THOMPSON Jesse G, FRIMPONG Reynolds, REMIAS Joseph E, et al. Heat stable salt accumulation and solvent degradation in a pilot-scale CO2 capture process using coal combustion flue gas[J]. Aerosol and Air Quality Research, 2014, 14(2): 550-558. |
39 | CHAHEN Ludovic, HUARD Thierry, CUCCIA Lorena, et al. Comprehensive monitoring of MEA degradation in a post-combustion CO2 capture pilot plant with identification of novel degradation products in gaseous effluents[J]. International Journal of Greenhouse Gas Control, 2016, 51: 305-316. |
40 | UYANGA Itoro J, IDEM Raphael O. Studies of SO2- and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams[J]. Industrial & Engineering Chemistry Research, 2007, 46(8): 2558-2566. |
41 | SUPAP T, IDEM R, TONTIWACHWUTHIKUL P, et al. Kinetics of sulfur dioxide- and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams[J]. International Journal of Greenhouse Gas Control, 2009, 3(2): 133-142. |
42 | 高巨宝, 王淑娟, 周姗, 等. SO2对碳捕集过程影响的实验研究[J]. 中国电机工程学报, 2011, 31(5): 52-57. |
GAO Jubao, WANG Shujuan, ZHOU Shan, et al. Experimental study on the influence of SO2 on the CO2 capture process[J]. Proceedings of the CSEE, 2011, 31(5): 52-57. | |
43 | ZHOU Shan, WANG Shujuan, SUN Chenchen, et al. SO2 effect on degradation of MEA and some other amines[J]. Energy Procedia, 2013, 37: 896-904. |
44 | SUN Chenchen, WANG Shujuan, ZHOU Shan, et al. SO2 effect on monoethanolamine oxidative degradation in CO2 capture process[J]. International Journal of Greenhouse Gas Control, 2014, 23: 98-104. |
45 | LIU Chang, ZHAO Zhongyang, SHAO Lingyu, et al. Experimental study and modified modeling on effect of SO2 on CO2 absorption using amine solution[J]. Chemical Engineering Journal, 2022, 448: 137751. |
46 | ROONEY P C, DUPART M S, BACON T R. Oxygen’ role in alkanolamine degradation[J]. Hydrocarbon Processing, 1998, 77(7): 109-113. |
47 | MARIIA Pasichnyk, PETR Stanovsky, PETR Polezhaev, et al. Membrane technology for challenging separations: Removal of CO2, SO2 and NO x from flue and waste gases[J]. Separation and Purification Technology, 2023: 323. |
48 | ZHAO Y, ZHANG J, NIELSEN C P. The effects of energy paths and emission controls and standards on future trends in China’s emissions of primary air pollutants[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 8849-8868. |
49 | HOFELSAUER J, NOTTER W, MAROCCO L, et al. Improvement of SO2 removal with application of wall rings and advanced CFD modelling—The FGD plant in the megalopolis power plant[J]. VGB Powertech, 2008, 88(3): 85-89. |
50 | 史贵君. 魏家峁电厂660MW超临界机组脱硫超低排放改造研究[D]. 北京: 华北电力大学, 2018. |
SHI Guijun. Study on desulfurization ultra-low emissions renovation of 660MW supercritical unit in Weijiamao power plant[D]. Beijing: North China Electric Power University, 2018. | |
51 | 梁磊. 高浓度SO2石灰石-石膏湿法脱硫系统升级改造及应用[J]. 电力科学与工程, 2016, 32(4): 71-74, 78. |
LIANG Lei. Upgrading reconstruction and application of high concentration SO2 limestone gypsum wet desulfurization system[J]. Electric Power Science and Engineering, 2016, 32(4): 71-74, 78. | |
52 | 李兴华, 何育东. 燃煤火电机组SO2超低排放改造方案研究[J]. 中国电力, 2015, 48(10): 148-151, 160. |
LI Xinghua, HE Yudong. Study on modification of ultra-low SO2 emission in coal-fired power plants[J]. Electric Power, 2015, 48(10): 148-151, 160. | |
53 | 卢泓樾. 燃煤机组烟气污染物超低排放研究[J]. 电力科技与环保, 2014, 30(5): 8-11. |
LU Hongyue. Research of the domestic 600MW supercritical coal-fired units ultra in low emissions of flue gas[J]. Power Technology and Environmental Protection, 2014, 30(5): 8-11. | |
54 | 吴琼艳, 邹锐, 何佳, 等. 600MW“W”火焰炉超低排放改造方案研究与优化[C]// 2023年电力行业技术监督工作交流会暨专业技术论坛论文集(下册). 南宁, 2023: 1002-1007. |
WU Qiongyan, ZOU Rui, HE Jia, et al. Research and optimization of ultra-low emission transformation plan for 600MW “W” flame furnace[C]// Proceedings of the 2023 Power Industry Technical Supervision Work Exchange Meeting and Professional Technical Forum (Next Book). Nanning, 2023: 1002-1007. | |
55 | 张赢丹, 丁俊, 丁宏. 单塔双区脱硫技术在燃煤电厂中的应用[J]. 浙江电力, 2018, 37(3): 73-76. |
ZHANG Yingdan, DING Jun, DING Hong. Application of single tower and double zone desulphurization technology in coal-fired power plants[J]. Zhejiang Electric Power, 2018, 37(3): 73-76. | |
56 | 何永胜, 高继贤, 陈泽民, 等. 单塔双区湿法高效脱硫技术应用[J]. 环境影响评价, 2015, 37(5): 52-56. |
HE Yongsheng, GAO Jixian, CHEN Zemin, et al. Application of “one-absorber two-sections” high efficiency wet flue gas desulfurization technology[J]. Environmental Impact Assessment, 2015, 37(5): 52-56. | |
57 | 霍玉涛, 刘丹丹. 单塔双循环技术在山西某超低排放项目上的应用[J]. 当代化工研究, 2023(3): 98-100. |
HUO Yutao, LIU Dandan. Single tower double cycle technology application in an ultra-low emission project in Shanxi Province[J]. Modern Chemical Research, 2023(3): 98-100. | |
58 | 刘同干. 单塔双循环脱硫技术在1000MW燃煤机组上的应用研究[D]. 南京: 南京理工大学, 2019. |
LIU Tonggan. Application of single-tower double-cycle desulfurization technology in 1000MW coal-fired unit[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
59 | NIE Peng fei. Study of the capacity extension scheme for 600MW unit wet flue gas desulfurization in a power plant[J]. Advanced Materials Research, 2015, 1092/1093: 917-922. |
60 | 高广军, 赵家涛, 王玉祥, 等. 双塔双循环技术在火电厂脱硫改造中的应用[J]. 江苏电机工程, 2015, 34(4): 79-80. |
GAO Guangjun, ZHAO Jiatao, WANG Yuxiang, et al. Application of two tower-two cycle technique for desulphurization retrofit of coal-fired thermal power units[J]. Jiangsu Electrical Engineering, 2015, 34(4): 79-80. | |
61 | 郭健. 任丘电厂湿法脱硫双塔串联系统改造研究及应用[D]. 北京: 华北电力大学, 2018. |
GUO Jian. Research and application of reformation for twin towers series system of wet desulphurization in Renqiu power plant[D]. Beijing: North China Electric Power University, 2018. | |
62 | 张彦明. 火电燃煤机组脱硫超净改造工程实践研究[J]. 资源节约与环保, 2018(5): 17-18. |
ZHANG Yanming. Practical study on ultra-clean desulfurization reconstruction project of thermal power coal-fired units[J]. Resources Economization & Environmental Protection, 2018(5): 17-18. | |
63 | 钟洪禄, 刘涛, 杨利军, 等. 湿法烟气脱硫吸收塔顶升改造方案[J]. 中国资源综合利用, 2020, 38(3): 176-180. |
ZHONG Honglu, LIU Tao, YANG Lijun, et al. Wet flue gas desulfurization absorption tower uplifting transformation scheme[J]. China Resources Comprehensive Utilization, 2020, 38(3): 176-180. | |
64 | 李健. 某燃煤电厂烟气超低排放改造工程案例[J]. 安徽化工, 2023, 49(3): 123-127. |
LI Jian. A case study of flue gas ultra-low emission transformation project of a coal-fired power plant[J]. Anhui Chemical Industry, 2023, 49(3): 123-127. | |
65 | 郭静静, 陈帅, 王匡. 火电厂湿法烟气脱硫系统技术改造实践[J]. 冶金能源, 2022, 41(5): 61-64. |
GUO Jingjing, CHEN Shuai, WANG Kuang. Technical reform practice of flue gas desulfurization system in thermal power plant[J]. Energy for Metallurgical Industry, 2022, 41(5): 61-64. | |
66 | 孙昀, 王辉. 兰州石化公司燃煤锅炉超低排放技术改造[J]. 化工安全与环境, 2023, 36(4): 47-52. |
SUN Yun, WANG Hui. Technical transformation of ultra-low emission of coal-fired boilers in Lanzhou Petrochemical Company[J]. Chemical Safety & Environment, 2023, 36(4): 47-52. | |
67 | IDEM George S, ROCHELLE Gary T. Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2513-2521. |
68 | IDEM Raphael, TONTIWACHWUTHIKUL Paitoon, SAIWAN Chintana, et al. Method for inhibiting amine degradation during CO2 capture from a gas stream: US8105420[P]. 2012-01-31. |
69 | SUPAP Teeradet, IDEM Raphael, TONTIWACHWUTHIKUL Paitoon, et al. Investigation of degradation inhibitors on CO2 capture process[J]. Energy Procedia, 2011, 4: 583-590. |
70 | ZHAO Zhijun, DONG Haifeng, HUANG Ying, et al. Ionic degradation inhibitors and kinetic models for CO2 capture with aqueous monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2015, 39: 119-128. |
71 | SEXTON Andrew J. Amine oxidation in carbon dioxide capture processes[D]. Austin: The University of Texas at Austin, 2008. |
72 | SEXTON Andrew J, ROCHELLE Gary T. Catalysts and inhibitors for oxidative degradation of monoethanolamine[J]. International Journal of Greenhouse Gas Control, 2009, 3(6): 704-711. |
73 | KOHL Arthur L, NIELSEN R. Gas purification[M]. Elsevier, 1997. |
74 | ISLAS Jorge, GRANDE Genice. Abatement costs of SO2-control options in the Mexican electric-power sector[J]. Applied Energy, 2008, 85(2/3): 80-94. |
75 | HUTSON Nick D, KRZYZYNSKA Renata, SRIVASTAVA Ravi K. Simultaneous removal of SO2, NO x, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5825-5831. |
76 | 张佩文. 多孔材料负载离子液体在吸收SO2、NO2、CO2中的应用[D]. 石家庄: 河北科技大学, 2019.ZHANGPeiwen. Application of porous material loaded ionic liquids in absorption of SO2, NO2, CO2[D]. Shijiazhuang: Hebei University of Science and Technology, 2019. |
77 | 陈姝晖, 伍岳, 张文祥, 等. 离子型有机多孔聚合物的制备及其烟气脱硫耦合脱碳性质[J]. 化工进展, 2023, 42(2): 1028-1038. |
CHEN Shuhui, WU Yue, ZHANG Wenxiang, et al. Preparation of ionic organic porous polymer and its coupled desulfurization and decarbonization properties in flue gas[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1028-1038. | |
78 | COPPOLA Antonio, SCALA Fabrizio. A preliminary techno-economic analysis on the calcium looping process with simultaneous capture of CO2 and SO2 from a coal-based combustion power plant[J]. Energies, 2020, 13(9): 2176. |
79 | 王海堂, 张莹, 李挺, 等. 钙基脱硫剂在烟气脱硫中的研究现状分析[J]. 广东化工, 2023, 50(7): 159-160, 167. |
WANG Haitang, ZHANG Ying, LI Ting, et al. Analysis of the research status of calcium-based desulfurizers in flue gas desulfurization[J]. Guangdong Chemical Industry, 2023, 50(7): 159-160, 167. | |
80 | 况文娟, 考宏涛, 任斌, 等. 钙基吸收剂循环吸收CO2技术的研究进展[J]. 化工进展, 2011, 30(6): 1356-1360. |
KUANG Wenjuan, Hongtao KAO, REN Bin, et al. Research progress of cyclic absorbing CO2 technology with Ca-based sorbents[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1356-1360. | |
81 | 高生军, 段俊, 赵玲. 燃煤烟气脱硫脱硝脱碳一体化技术的研究进展[J]. 环境化学, 2021, 40(7): 2234-2245. |
GAO Shengjun, DUAN Jun, ZHAO Ling. Research progress on integrated technology for desulfurization, denitration and decarbonization of coal-fired flue gas[J]. Environmental Chemistry, 2021, 40(7): 2234-2245. | |
82 | SUN Ping, GRACE John R, Jim LIM C, et al. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions[J]. Environmental Science & Technology, 2007, 41(8): 2943-2949. |
83 | 郭名女, 张力, 唐强, 等. CaO/MgO和CaO/Ca9Al6O18同时捕集CO2/SO2的循环吸收特性[J]. 燃料化学学报, 2012, 40(6): 757-762. |
GUO Mingnü, ZHANG Li, TANG Qiang, et al. Cyclic adsorption characteristic of CaO/MgO and CaO/Ca9Al6O18 for simultaneous CO2/SO2 capture[J]. Journal of Fuel Chemistry and Technology, 2012, 40(6): 757-762. | |
84 | 陈鸿伟, 赵争辉, 王为力. 石灰石联合脱碳脱硫影响因素及表面结构的分析[J]. 动力工程学报, 2013, 33(3): 210-217. |
CHEN Hongwei, ZHAO Zhenghui, WANG Weili. Factors influencing simultaneous CO2/SO2 capture by Ca-based sorbent and evolution of the limestone surface structure[J]. Journal of Chinese Society of Power Engineering, 2013, 33(3): 210-217. | |
85 | BASINAS Panagiotis, WU Yinghai, GRAMMELIS Panagiotis, et al. Effect of pressure and gas concentration on CO2 and SO2 capture performance of limestones[J]. Fuel, 2014, 122: 236-246. |
86 | 薛章涵. 燃煤锅炉烟气脱硫脱碳单元与热力系统集成优化[D]. 北京: 华北电力大学, 2017. |
XUE Zhanghan. Integrated optimization of flue gas desulphurization and decarbonization unit and power generation system in a coal-fired power plant[D]. Beijing: North China Electric Power University, 2017. | |
87 | 余景文. 氨水溶液脱除燃煤电站烟气中二氧化碳能耗研究[D]. 北京: 清华大学, 2016. |
YU Jingwen. Study on energy requirement for CO2 capture with aqueous ammonia solution[D]. Beijing: Tsinghua University, 2016. | |
88 | KIM You Jeong, YOU Jong Kyun, HONG Won Hi, et al. Characteristics of CO2 absorption into aqueous ammonia[J]. Separation Science and Technology, 2008, 43(4): 766-777. |
89 | 陈坡一. 氨法脱硫副产物亚硫酸铵浆液氧化技术[J]. 广州化工, 2013, 41(18): 149-151, 168. |
CHEN Poyi. The oxidation technology of ammonia desulfurization by-product ammonium sulfite slurry[J]. Guangzhou Chemical Industry, 2013, 41(18): 149-151, 168. | |
90 | GAO Xiang, DING Honglei, DU Zhen, et al. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization[J]. Applied Energy, 2010, 87(8): 2647-2651. |
91 | YU Hai, MORGAN Scott, ALLPORT Andrew, et al. Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption[J]. Chemical Engineering Research and Design, 2011, 89(8): 1204-1215. |
92 | 齐国杰, 王淑娟, 余景文, 等. 氨水溶液联合脱除燃煤烟气中CO2和SO2的模拟和经济性分析[J]. 中国电机工程学报, 2013, 33(17): 16-23, 6. |
QI Guojie, WANG Shujuan, YU Jingwen, et al. Modeling and economic analysis on combined capture of CO2 and SO2 in flue gas using aqueous ammonia[J]. Proceedings of the CSEE, 2013, 33(17): 16-23, 6. | |
93 | LI Kangkang, YU Hai, YAN Shuiping, et al. Technoeconomic assessment of an advanced aqueous ammonia-based postcombustion capture process integrated with a 650-MW coal-fired power station[J]. Environmental Science & Technology, 2016, 50(19): 10746-10755. |
94 | JIANG Kaiqi, YU Hai, CHEN Linghong, et al. An advanced, ammonia-based combined NO x /SO x /CO2 emission control process towards a low-cost, clean coal technology[J]. Applied Energy, 2020, 260: 114316. |
95 | 徐学基. 可循环胺类吸收剂用于烟气脱硫脱碳的研究[D]. 青岛: 青岛科技大学, 2017. |
XU Xueji. The study on recyclable amine absorber used for flue gas desulfurization decarburization[D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
96 | 梁锋. 有机胺法脱除二氧化硫工艺技术进展[J]. 硫酸工业, 2019(10): 14-19. |
LIANG Feng. Technological progress of sulphur dioxide removal by organic amines method[J]. Sulphuric Acid Industry, 2019(10): 14-19. | |
97 | 符乐, 杨阳, 徐文青, 等. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
FU Le, YANG Yang, XU Wenqing, et al. Research progress in CO2 capture technology using novel biphasic organic amine absorbent[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. | |
98 | YU Y S, LI Y, LI Q, et al. An innovative process for simultaneous removal of CO2 and SO2 from flue gas of a power plant by energy integration[J]. Energy Conversion and Management, 2009, 50(12): 2885-2892. |
99 | 晋旭东, 马晓峰. 利用有机胺进行烟气中SO2和CO2双脱的探讨[J]. 山西电力, 2015(6): 66-69. |
JIN Xudong, MA Xiaofeng. Using organic amine to remove SO2 and CO2 from flue gas[J]. Shanxi Electric Power, 2015(6): 66-69. | |
100 | LIU Yu, ZHAO Ercheng, ZHU Wentao, et al. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples[J]. Journal of Chromatography A, 2009, 1216(6): 885-891. |
101 | Gregorio GARCÍA, ATILHAN Mert, APARICIO Santiago. Simultaneous CO2 and SO2 capture by using ionic liquids: A theoretical approach[J]. Physical Chemistry Chemical Physics, 2017, 19(7): 5411-5422. |
102 | WANG Kai, XU Weijie, WANG Qinglian, et al. Rational design and screening of ionic liquid absorbents for simultaneous and stepwise separations of SO2 and CO2 from flue gas[J]. Industrial & Engineering Chemistry Research, 2022, 61(6): 2548-2561. |
103 | CHEN Zhaoyang, CHEN Chao, ZHANG Yu, et al. Carbon dioxide and sulfur dioxide capture from flue gas by gas hydrate based process[J]. Energy Procedia, 2017, 142: 3454-3459. |
104 | 罗沁澜, 张义锋, 李娜, 等. 复合胺砜溶液同时吸收并分部解吸CO2/SO2/NO x 循环实验研究[J]. 工程热物理学报, 2016, 37(6): 1237-1242. |
LUO Qinlan, ZHANG Yifeng, LI Na, et al. Experimental studies on absorption and regeneration performance of compound amine sulphone solvents on CO2, SO2 and NO x capture[J]. Journal of Engineering Thermophysics, 2016, 37(6): 1237-1242. | |
105 | CHOI Won-Joon, MIN Byoung-Moo, SHON Byung-Hyun, et al. Characteristics of absorption/regeneration of CO2-SO2 binary systems into aqueous AMP+ ammonia solutions[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(5): 635-640. |
106 | LI Yang, WANG H Paul, LIAO Changyu, et al. Dual alkali solvent system for CO2 capture from flue gas[J]. Environmental Science & Technology, 2017, 51(15): 8824-8831. |
107 | 刘克峰, 刘陶然, 蔡勇, 等. 二氧化碳捕集技术研究和工程示范进展[J/OL]. 化工进展, 2024 [2023-12-29]. . |
LIU Kefeng, LIU Taoran, CAI Yong, et al. Progress in research and engineering demonstration of CO2 capture technology[J/OL]. Chemical Industry and Engineering Progress, 2024 [2023-12-29]. . | |
108 | DAVOODI Shadfar, Mohammed AL-SHARGABI, WOOD David A, et al. Review of technological progress in carbon dioxide capture, storage, and utilization[J]. Gas Science and Engineering, 2023, 117: 205070. |
109 | WAPPEL David, KHAN Ash, SHALLCROSS David, et al. The effect of SO2 on CO2 absorption in an aqueous potassium carbonate solvent[J]. Energy Procedia, 2009, 1(1): 125-131. |
110 | MANTRIPRAGADA Hari C, ZHAI Haibo, RUBIN Edward S. Boundary Dam or Petra Nova—Which is a better model for CCS energy supply?[J]. International Journal of Greenhouse Gas Control, 2019, 82: 59-68. |
111 | GARG Bharti, HAQUE Nawshad, COUSINS Ashleigh, et al. Techno-economic evaluation of amine-reclamation technologies and combined CO2/SO2 capture for Australian coal-fired plants[J]. International Journal of Greenhouse Gas Control, 2020, 98: 103065. |
112 | IEA. Net Zero Roadmap: A global pathway to keep the 1.5℃ goal in reach[R/OL]. (2023-09) [2023-12-31]. . |
113 | IEA. CCUS policies and business models: Building a commercial market[R/OL]. (2023-11) [2023-12-31]. . |
[1] | SUN Weiji, LIU Lang, FANG Zhiyu, ZHU Mengbo, XIE Geng, HE Wei, GAO Yuheng. Technique of wet carbonation of modified magnesium slag [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2161-2173. |
[2] | GAO Kang, ZHANG Xian, CHEN Shuaijun, WU Ximing, SHEN Jun, WANG Yugao, NIU Yanxia. Establishment of separation method for polysulfide ions in wet desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2210-2218. |
[3] | GUO Meng, GUO Meixin, WEI Sijia, ZHAO Yujiao, JIA Xuan. Effect of pH on MEC desulfurization performance and microbial mechanism of action [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2219-2225. |
[4] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[5] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
[6] | ZHANG Xin, TANG Jiyun, CHEN Juan, SONG Zhanlong, DONG Yong, YAO Hong. Transformation of trace metals Cu and Pb during high temperature flue gas pyrolysis of waste tires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1606-1613. |
[7] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
[8] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
[9] | YANG Xue, LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang. Research progress of 2D layered materials for fuel oil oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 422-436. |
[10] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[11] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[12] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[13] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[14] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |