Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1492-1505.DOI: 10.16085/j.issn.1000-6613.2023-0355
• Resources and environmental engineering • Previous Articles
TIONG Michelle1(), YE Hang1(), BAO Qi1, LIU Qi1(), JING Tieya2, YUAN Haowei2, ZHAO Wentao2, WANG Xiaolong2, XIAN Chenggang1
Received:
2023-03-09
Revised:
2023-07-10
Online:
2024-04-11
Published:
2024-03-10
Contact:
LIU Qi
张敏1(), 叶航1(), 包琦1, 刘琦1(), 荆铁亚2, 袁浩伟2, 赵文韬2, 王晓龙2, 鲜成钢1
通讯作者:
刘琦
作者简介:
张敏(1992—),女,博士,博士后,研究方向为纳米水泥、碳封存与利用。E-mail:michelletiong@cup.edu.cn基金资助:
CLC Number:
TIONG Michelle, YE Hang, BAO Qi, LIU Qi, JING Tieya, YUAN Haowei, ZHAO Wentao, WANG Xiaolong, XIAN Chenggang. Review on key parameters and storage capacity potential assessment for in-situ carbon mineralization site[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1492-1505.
张敏, 叶航, 包琦, 刘琦, 荆铁亚, 袁浩伟, 赵文韬, 王晓龙, 鲜成钢. CO2原位矿化选址关键参数及其封存潜力评估研究进展[J]. 化工进展, 2024, 43(3): 1492-1505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0355
矿物种类 | 化学成分 | 每封存1t CO2 所需质量/t | 潜在CO2吸收率(质量分数)/% |
---|---|---|---|
硅灰石 | CaSiO3 | 9.68① | 38 |
镁橄榄石 | Mg2SiO4 | 5.86② | 63 |
蛇纹石 | Mg3Si2O5(OH)4 | 7.69② | 48 |
钙长石 | CaAlSi2O8 | 23.1① | 16 |
玄武玻璃 | Na0.08K0.08Fe(Ⅱ)0.17 | 8.67③ | — |
Mg0.28Ca0.26 | |||
Al0.36Fe(Ⅲ)0.02SiTi0.02O3.45 |
矿物种类 | 化学成分 | 每封存1t CO2 所需质量/t | 潜在CO2吸收率(质量分数)/% |
---|---|---|---|
硅灰石 | CaSiO3 | 9.68① | 38 |
镁橄榄石 | Mg2SiO4 | 5.86② | 63 |
蛇纹石 | Mg3Si2O5(OH)4 | 7.69② | 48 |
钙长石 | CaAlSi2O8 | 23.1① | 16 |
玄武玻璃 | Na0.08K0.08Fe(Ⅱ)0.17 | 8.67③ | — |
Mg0.28Ca0.26 | |||
Al0.36Fe(Ⅲ)0.02SiTi0.02O3.45 |
项目名称 | 目标储层 | CO2相态 | 运营情况 | 总CO2封存量 | 转化率/% | 矿化反应效率 |
---|---|---|---|---|---|---|
CarbFix | 玄武岩 (400~800m) | CO2饱和溶液 | CarbFix1:2012—2016年 CarbFix2:2014年至今 | 目前每年CO2注入6500t,总容量预计0.33×108t | 95 | — |
Wallula | 大陆溢流玄武岩 (800~900m) | 超临界 | 2009年开展项目,主要是地下地质表征;2013年7—8月注入CO2;2015年停止运营 | 每天CO2注入不超过40t,共计1000t | 60 | 1.24±0.52kg CO2/m3 |
Nagaoka① | 砂岩含水层 (1100m) | 超临界 | 2003—2005年注入CO2;目前只用于监测地下活动 | 10405t | — | — |
项目名称 | 目标储层 | CO2相态 | 运营情况 | 总CO2封存量 | 转化率/% | 矿化反应效率 |
---|---|---|---|---|---|---|
CarbFix | 玄武岩 (400~800m) | CO2饱和溶液 | CarbFix1:2012—2016年 CarbFix2:2014年至今 | 目前每年CO2注入6500t,总容量预计0.33×108t | 95 | — |
Wallula | 大陆溢流玄武岩 (800~900m) | 超临界 | 2009年开展项目,主要是地下地质表征;2013年7—8月注入CO2;2015年停止运营 | 每天CO2注入不超过40t,共计1000t | 60 | 1.24±0.52kg CO2/m3 |
Nagaoka① | 砂岩含水层 (1100m) | 超临界 | 2003—2005年注入CO2;目前只用于监测地下活动 | 10405t | — | — |
参数 | 适宜 | 不适宜 |
---|---|---|
CO2源汇匹配距离 | <250km | >250km |
目标储层位置 | 熔岩流的顶底部,拥有较好的孔隙结构、裂缝和角砾化发育程度 | 地层不具备孔隙结构发育、裂缝和角砾化 |
岩石矿物成分 | 硅灰石、镁橄榄石、蛇纹石、钙长石、玄武玻璃等较多 | 活性矿物含量较少 |
面积 | >20km2 | <10km2 |
体积 | >20km3 | <10km3 |
注入能力 | 低速注入 | 高速注入 |
环境条件(水资源、地表植被和社区) | 远离 | 临近 |
参数 | 适宜 | 不适宜 |
---|---|---|
CO2源汇匹配距离 | <250km | >250km |
目标储层位置 | 熔岩流的顶底部,拥有较好的孔隙结构、裂缝和角砾化发育程度 | 地层不具备孔隙结构发育、裂缝和角砾化 |
岩石矿物成分 | 硅灰石、镁橄榄石、蛇纹石、钙长石、玄武玻璃等较多 | 活性矿物含量较少 |
面积 | >20km2 | <10km2 |
体积 | >20km3 | <10km3 |
注入能力 | 低速注入 | 高速注入 |
环境条件(水资源、地表植被和社区) | 远离 | 临近 |
30 | KELEMEN Peter, BENSON Sally M, Hélène PILORGÉ, et al. An overview of the status and challenges of CO2 storage in minerals and geological formations[J]. Frontiers in Climate, 2019, 1: 9. |
31 | ROSENQVIST Marija P, MEAKINS Max W J, PLANKE Sverre, et al. Reservoir properties and reactivity of the Faroe Islands Basalt Group: Investigating the potential for CO2 storage in the North Atlantic Igneous Province[J]. International Journal of Greenhouse Gas Control, 2023, 123: 103838. |
32 | VOIGT Martin, PEARCE Christopher R, BALDERMANN Andre, et al. Stable and radiogenic strontium isotope fractionation during hydrothermal seawater-basalt interaction[J]. Geochimica et Cosmochimica Acta, 2018, 240: 131-151. |
33 | 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582. |
WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. | |
34 | Geological Survey U.S.. Mineral Commodity Summaries 2023[R]. Reston, VA: U.S. Geological Survey, 2023. |
35 | SANDALOW D, AINES R, FRIEDMANN J, et al. Carbon Mineralization Roadmap[R]. Tokyo: Innovation for Cool Earth Forum (ICEF), 2021. |
36 | POWER I M, WILSON S A, DIPPLE G M. Serpentinite carbonation for CO2 sequestration[J]. Elements, 2013, 9(2): 115-121. |
37 | GOLDBERG David, SLAGLE Angela L. A global assessment of deep-sea basalt sites for carbon sequestration[J]. Energy Procedia, 2009, 1(1): 3675-3682. |
38 | WEISE F, FRIDRIKSSON T, ÁRMANNSSON H. CO2 fixation by calcite in high-temperature geothermal systems in Iceland[R]. Iceland: Iceland Geosurvey, 2008. |
39 | Peter MCGRAIL B, Todd SCHAEF H, Anita M HO, et al. Potential for carbon dioxide sequestration in flood basalts[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B12201. |
40 | 张亮, 温荣华, 耿松鹤, 等. CO2在玄武岩中矿物封存研究进展及关键问题[J]. 高校化学工程学报, 2022, 36(4): 473-480. |
ZHANG Liang, WEN Ronghua, GENG Songhe, et al. Mineral trapping of CO2 in basalt rock: Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(4): 473-480. | |
41 | BACHU Stefan, BONIJOLY Didier, BRADSHAW John, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443. |
42 | ANTHONSEN K L, AAGAARD P, BERGMO P E S, et al. CO2 storage potential in the Nordic region[J]. Energy Procedia, 2013, 37: 5080-5092. |
43 | KANG M, KIM J H, KIM K-O, et al. Assessment of CO2 storage capacity for basalt caprock-sandstone reservoir system in the northern East China Sea[C]//20th EGU General Assembly Conference Abstracts. Vienna, Austria : European Geosciences Union (EGU), 2018: 5772. |
44 | LEI Zhihong, ZHANG Yanjun, ZHOU Ling, et al. Numerical simulation of CO2 mineral sequestration in basalt reservoir through an abandoned oil well: A case study in Xujiaweizi Area, Northeast China[J]. Environmental Earth Sciences, 2021, 80(16): 527. |
45 | 吾尔娜, 陈琦, 王世伟, 等. 济阳坳陷玄武岩油气藏储层的CO2封存潜力研究[J]. 西部探矿工程, 2017, 29(12): 98-100. |
WU Erna, CHEN Qi, WANG Shiwei, et al. Study on CO2 storage potential of basalt reservoir in Jiyang depression[J]. West-China Exploration Engineering, 2017, 29(12): 98-100. | |
46 | 叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573. |
YE Hang, HAO Ning, LIU Qi. Review on key parameters and characterization technology of CO2 sequestration mechanism in saline aquifers[J]. Power Generation Technology, 2022, 43(4): 562-573. | |
47 | 段先哲, 牛苏娟, 李赛, 等. Mg同位素示踪中国东部中生代深部碳循环[J]. 地质论评, 2022, 68(4): 1345-1360. |
DUAN Xianzhe, NIU Sujuan, LI Sai, et al. Mg isotope tracing the Mesozoic deep carbon cycle in Eastern China[J]. Geological Review, 2022, 68(4): 1345-1360. | |
48 | MATTER Juerg M, Stute Martin, Snæbjörnsdottir Sandra Ó, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science, 2016, 352(6291): 1312-1314. |
49 | WANG Fei, DREISINGER David, JARVIS Mark, et al. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions[J]. Chemical Engineering Journal, 2019, 360: 452-463. |
50 | POGGE VON STRANDMANN Philip A E, BURTON Kevin W, SNÆBJÖRNSDÓTTIR Sandra O, et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J]. Nature Communications, 2019, 10(1): 1983. |
51 | CLARK Deirdre E, GUNNARSSON Ingvi, Aradóttir EDDA S, et al. Monitoring of CO2 /H2S gas mixture injection in basaltic rocks at Hellisheiði Geothermal Power Plant, Iceland[C]//EGU General Assembly Conference Abstracts. Vienna, Austria: European Geosciences Union (EGU), 2016: EPS C2016-14713. |
52 | GUNNARSSON Ingvi, ARADÓTTIR Edda S, OELKERS Eric H, et al. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control, 2018, 79: 117-126. |
53 | CARBFIX. Permanent and secure Geological storage of CO2 by in-situ carbon mineralization[R]. Iceland: CARBFIX, 2022. |
54 | Monitor Geoengineering. Carbfix and climeworks’ large-scale plans to capture CO2 and inject it into basalt formations in Iceland involve high consumption of scarce resources and potential risks [EB/OL].(2021-10-28)[2023-07-10]. . |
55 | International Organization for Standardization. Greenhouse gases Part 2: Specification with guidance at theproject level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements: [S]. Switzerland: International Organization for Standardization, 2019. |
56 | MCGRAIL B P, SPANE F A, AMONETTE J E, et al. Injection and monitoring at the wallula basalt pilot project[J]. Energy Procedia, 2014, 63: 2939-2948. |
57 | MCGRAIL B P, SCHAEF H T, SPANE F A, et al. Wallula basalt pilot demonstration project: Post-injection results and conclusions[J]. Energy Procedia, 2017, 114: 5783-5790. |
58 | WHITE Signe K, SPANE Frank A, Todd SCHAEF H, et al. Quantification of CO2 mineralization at the wallula basalt pilot project[J]. Environmental Science & Technology, 2020, 54(22): 14609-14616. |
59 | Action Climate. World’s first basalt CCS project to get underway in US[EB/OL].(2010-10-28)[2023-07-10]. . |
60 | WHITE S, XUE Z, SATO T, et al. Modeling and analysis of the pressure response in the CO2 injection experiment conducted at Nagaoka, Japan[C]//8th Int. Conference on Greenhouse Gas Control Technologies (GHGT 8. Trondheim, Norway: GHGT, 2006:242-243. |
1 | IEA. CO2 Emissions in 2022[R]. Paris: IEA, 2023. |
2 | 科学技术部社会发展科技司, 中国 21 世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图(2019)[M]. 北京: 科学出版社, 2019. |
Social development technology department of the ministry of science and technology, agenda China 21 management center. Roadmap for carbon capture, utilization and storage technology development in China(2019)[M]. Beijing: Science Press, 2019. | |
3 | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28. |
QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. | |
4 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
5 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 21世纪议程管理中心, 2021. |
CAI Bofeng, Li Qi, Zhang Xian, et al. China CO2 Capture, Utilization and Storage (CCUS) Annual Report (2021) —China CCUS pathway study[R]. Beijing: Institute of Environmental Planning, Ministry of Ecology and Environment, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Agenda 21 Management Center, 2021. | |
6 | 高志豪, 夏菖佑, 廖松林, 等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报, 2023, 29(1): 66-75. |
GAO Zhihao, XIA Changyou, LIAO Songlin, et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities, 2023, 29(1): 66-75. | |
7 | WIGAND M, CAREY J W, SCHÜTT H, et al. Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers[J]. Applied Geochemistry, 2008, 23(9): 2735-2745. |
8 | SNÆBJÖRNSDÓTTIR Sandra Ó, Bergur SIGFÚSSON, MARIENI Chiara, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1(2): 90-102. |
9 | CHEN Min, ZHANG Qiwu, LI Zhao, et al. Insights into the mechanochemical interfacial interaction between calcite and serpentine: Implications for ambient CO2 capture[J]. Journal of Cleaner Production, 2023, 401: 136715. |
10 | 何民宇, 刘维燥, 刘清才, 等. CO2矿物封存技术研究进展[J]. 化工进展, 2022, 41(4): 1825-1833. |
HE Minyu, LIU Weizao, LIU Qingcai, et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833. | |
11 | BEAULIEU E, GODDÉRIS Y, DONNADIEU Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5): 346-349. |
12 | National Academies of Sciences Engineering Medicine. Negative emissions technologies and reliable sequestration: A research agenda[M]. Washington, DC: The National Acadmies Press. |
13 | 李晓媛, 常春, 于青春. CO2矿化封存条件下玄武岩溶解反应速率模型[J]. 现代地质, 2013, 27(6): 1477-1483. |
LI Xiaoyuan, CHANG Chun, YU Qingchun. Model of basalt dissolution rate under CO2 mineral sequestration conditions[J]. Geoscience, 2013, 27(6): 1477-1483. | |
14 | 朱辰, 赵良, 高雄, 等. 基于二氧化碳封存的水镁石反应动力学研究[J]. 第四纪研究, 2011, 31(3): 438-446. |
ZHU Chen, ZHAO Liang, GAO Xiong, et al. CO2 sequestration based study of reaction kinetics of brucite[J]. Quaternary Sciences, 2011, 31(3): 438-446. | |
15 | 王晗, 赵良, 朱辰. 一种利用富镁矿物封存烟气中二氧化碳的装置及方法: CN109364715A[P]. 2019-02-22. |
WANG Han, ZHAO Liang, ZHU Chen. Device and method for sequestering carbon dioxide in smoke by means of magnesium-enriched minerals: CN109364715A[P]. 2019-02-22. | |
16 | XIONG Wei, WELLS Rachel K, MENEFEE Anne H, et al. CO2 mineral trapping in fractured basalt[J]. International Journal of Greenhouse Gas Control, 2017, 66: 204-217. |
61 | MITO Saeko, XUE Ziqiu, OHSUMI Takashi. Case study of geochemical reactions at the Nagaoka CO2 injection site, Japan[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 309-318. |
62 | YAMAMOTO Hajime, NAKAJIMA Takahiro, XUE Ziqiu. Quantitative interpretation of trapping mechanisms of CO2 at nagaoka pilot project a history matching study for 10-year post-injection-[J]. Energy Procedia, 2017, 114: 5058-5069. |
63 | BLONDES M, MERRILL M, ANDERSON Steven T, et al. Carbon dioxide mineralization feasibility in the United States[R]. Scientific Investigations Report-US Geological Survey, 2019 |
64 | PEDRO Jorge, ARAÚJO António A, MOITA Patrícia, et al. Mineral carbonation of CO2 in mafic plutonic rocks, Ⅰ—Screening criteria and application to a case study in southwest Portugal[J]. Applied Sciences, 2020, 10(14): 4879. |
65 | MOITA Patrícia, BERREZUETA Edgar, ABDOULGHAFOUR Halidi, et al. Mineral carbonation of CO2 in mafic plutonic rocks, Ⅱ—Laboratory experiments on early-phase supercritical CO2‒brine‒rock interactions[J]. Applied Sciences, 2020, 10(15): 5083. |
66 | GHOLAMI Raoof, RAZA Arshad, IGLAUER Stefan. Leakage risk assessment of a CO2 storage site: A review[J]. Earth-Science Reviews, 2021, 223: 103849. |
67 | DAVAL Damien. Carbon dioxide sequestration through silicate degradation and carbon mineralisation: Promises and uncertainties[J]. NPJ Materials Degradation, 2018, 2: 11. |
68 | CARBFIX. Where does it work? [EB/OL].(2021-6-16)[2023-07-10]. . |
69 | 林锋, 黄润秋, 王胜, 等. 岩体体积节理数(Jv)的现场测量方法评价[J]. 工程地质学报, 2008, 16(5): 663-666. |
LIN Feng, HUANG Runqiu, WANG Sheng, et al. Evaluation of in situ measurement methods for counting volumetric joints of rock mass[J]. Journal of Engineering Geology, 2008, 16(5): 663-666. | |
70 | AMBROSE W A, LAKSHMINARASIMHAN S, HOLTZ M H, et al. Geologic factors controlling CO2 storage capacity and permanence: Case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage[J]. Environmental Geology, 2008, 54(8): 1619-1633. |
71 | WATSON M N, GIBSON-POOLE C M. Reservoir selection for optimised geological injection and storage of carbon dioxide: A combined geochemical and stratigraphic perspective[C]//The fourth annual conference on carbon capture and storage. Alexandria: National Energy Technology Laboratory, US Department of Energy, 2005: 2-5. |
17 | 李鹏春, 江静练, 程锦辉, 等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报, 2023, 29(1): 76-84. |
LI Pengchun, JIANG Jinglian, CHENG Jinhui, et al. Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou peninsula, Guangdong Province, China[J]. Geological Journal of China Universities, 2023, 29(1): 76-84. | |
18 | SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(6275): 486. |
19 | ABDOLHOSSEINI QOMI M J, MILLER Q R S, ZARE S, et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry, 2022, 6(9): 598-613. |
20 | SANDALOW D, AINES R, FRIEDMANN J, et al. Carbon Mineralization Roadmap Draft October 2021[R]. Livermore, CA: Lawrence Livermore National Lab. (LLNL), 2021. |
21 | 王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40(4): 2318-2327. |
WANG Zhonghui, SU Sheng, YIN Zijun, et al. Research progress of CO2 mineralization and integrated absorption-mineralization(IAM) method[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. | |
22 | 姜禾禾, 王佳敏, 万博. 国际岩矿地球化学固碳技术研究进展[J]. 第四纪研究, 2023, 43(2): 494-508. |
JIANG Hehe, WANG Jiamin, WAN Bo. Review in research progress in carbon sequestration technology from a petrological and geochemical perspective[J]. Quaternary Sciences, 2023, 43(2): 494-508. | |
23 | RAZA Arshad, GLATZ Guenther, GHOLAMI Raoof, et al. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges[J]. Earth-Science Reviews, 2022, 229: 104036. |
24 | GRAS A, BEAUDOIN G, MOLSON J, et al. Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project, Quebec, Canada[J]. Chemical Geology, 2020, 546: 119661. |
25 | GADIKOTA Greeshma. Carbon mineralization pathways for carbon capture, storage and utilization[J]. Communications Chemistry, 2021, 4(1): 23. |
26 | 邱添, 曾令森, 申婷婷. 基性-超基性岩碳酸盐化固碳效应研究进展[J]. 中国地质调查, 2021, 8(4): 20-32. |
QIU Tian, ZENG Lingsen, SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. Geological Survey of China, 2021, 8(4): 20-32. | |
27 | TURVEY Connor C, WILSON Sasha, HAMILTON Jessica L, et al. Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings[J]. International Journal of Greenhouse Gas Control, 2018, 79: 38-60. |
28 | 李万伦, 陈晶, 贾凌霄, 等. 玄武岩CO2地质封存研究进展[J]. 地质论评, 2022, 68(2): 648-657. |
LI Wanlun, CHEN Jing, JIA Lingxiao, et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review, 2022, 68(2): 648-657. | |
29 | ZHANG Shuo, DEPAOLO Donald J. Rates of CO2 mineralization in geological carbon storage[J]. Accounts of Chemical Research, 2017, 50(9): 2075-2084. |
72 | BACCI Giacomo, KORRE Anna, DURUCAN Sevket. An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivity in the wellbore and far field regions[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 579-588. |
73 | GANESH Priya Ravi, MISHRA Srikanta. Reduced physics modeling of CO2 injectivity[J]. Energy Procedia, 2014, 63: 3116-3125. |
74 | SOKAMA-NEUYAM Yen Adams, URSIN Jann Rune. CO2 well injectivity: Effect of viscous forces on precipitated minerals[C]//Doha, Qatar. IPTC, 2015. |
75 | VILARRASA Victor, RINALDI Antonio P, RUTQVIST Jonny. Long-term thermal effects on injectivity evolution during CO2 storage[J]. International Journal of Greenhouse Gas Control, 2017, 64: 314-322. |
76 | LIU Danqing, AGARWAL Ramesh, LI Yilian, et al. Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO2 sequestration[J]. International Journal of Greenhouse Gas Control, 2019, 85: 109-120. |
77 | RAZA Arshad, REZAEE Reza, GHOLAMI Raoof, et al. A screening criterion for selection of suitable CO2 storage sites[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 317-327. |
78 | Andrea D'ANIELLO, Sigrún TÓMASDÓTTIR, Bergur SIGFÚSSON, et al. Modeling gaseous CO2 flow behavior in Layered basalts: Dimensional analysis and aquifer response[J]. Ground Water, 2021, 59(5): 677-693. |
79 | JAYNE Richard S, WU Hao, POLLYEA Ryan M. A probabilistic assessment of geomechanical reservoir integrity during CO2 sequestration in flood basalt formations[J]. Greenhouse Gases: Science and Technology, 2019, 9(5): 979-998. |
80 | Research institute of innovative technology for the earth. Demonstration test and monitoring at the iwanohara test site[EB/OL].(2007-4-29)[2023-07-10].. |
[1] | YUE Zihan, LONG Zhen, ZHOU Xuebing, ZANG Xiaoya, LIANG Deqing. State of the art on hydrogen storage of sⅡ clathrate hydrate [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. |
[2] | KUAI Zihan, YAN Ting, WU Shaofei, ZHOU Yuxiang, PAN Weiguo. Fabrication and heat storage properties of stearyl alcohol/expanded graphite composite phase change materials [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 301-310. |
[3] | Ye WANG, Chengzhi SHI, Zhendong SUN, Teng HE, Haochen ZHAO. Comprehensive effect of fluid parameters and obstacle structure on performance of solar energy storage tank [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 77-84. |
[4] | Liping ZHU, Shiwu LYU, Shanshan SUN, Shoufu YU, Cheng YANG, Xuekun SUN. Simulation of the effect of electrode heating on melting uniformity of basalt furnace [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3543-3549. |
[5] | Liping ZHU, Shoufu YU, Shiwu LÜ, Jiapei WU, Xiufeng TANG, Xuekun SUN. Numerical simulation of the melting process in basalt fiber tank [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 940-948. |
[6] | SHANG Baoyue1,YANG Shaobin2. Research progress of basalt fiber reinforced polymer composites [J]. Chemical Industry and Engineering Progree, 2011, 30(8): 1766-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |