Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 940-948.DOI: 10.16085/j.issn.1000-6613.2018-0675
• Materials science and technology • Previous Articles Next Articles
Liping ZHU(),Shoufu YU(),Shiwu LÜ,Jiapei WU,Xiufeng TANG,Xuekun SUN
Received:
2018-04-02
Revised:
2018-10-12
Online:
2019-02-05
Published:
2019-02-05
Contact:
Shoufu YU
通讯作者:
于守富
作者简介:
<named-content content-type="corresp-name">朱立平</named-content>(1984—),男,博士,高级工程师,长期从事高性能纤维及高分子膜材料生产工艺的数值模拟研究。E-mail:<email>zhuliping@fiberglasschina.com</email>。|于守富,教授级高级工程师,长期从事玻璃纤维、岩矿棉生产工艺技术的研究和工程设计。E-mail:<email>yushoufu@fiberglasschina.com</email>。
基金资助:
CLC Number:
Liping ZHU, Shoufu YU, Shiwu LÜ, Jiapei WU, Xiufeng TANG, Xuekun SUN. Numerical simulation of the melting process in basalt fiber tank[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 940-948.
朱立平, 于守富, 吕士武, 吴嘉培, 唐秀凤, 孙雪坤. 玄武岩纤维池窑熔制过程的数值模拟[J]. 化工进展, 2019, 38(02): 940-948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0675
天然气入口流速/m·s-1 | 天然气入口温度/℃ | 空燃比 | |
---|---|---|---|
5 | 27 | 12 | |
原料入口温度/℃ | 投料量/t·d-1 | 壁面发射率 | 熔液自由表面发射率 |
50 | 4 | 0.6 | 0.9 |
天然气入口流速/m·s-1 | 天然气入口温度/℃ | 空燃比 | |
---|---|---|---|
5 | 27 | 12 | |
原料入口温度/℃ | 投料量/t·d-1 | 壁面发射率 | 熔液自由表面发射率 |
50 | 4 | 0.6 | 0.9 |
名称 | 温度 | 参数 |
---|---|---|
密度ρ/kg?m–3 | ≤1000℃ | 2760 |
1000~1260℃ | 2942.8–0.1326T | |
≥1260℃ | 2942.8–0.1326T | |
黏度η/Pa·s | ≤1000℃ | 632.9615 |
1000~1260℃ | lglg η =1.5566–0.88043×T×10-3 | |
≥1260℃ | lglg η =1.5566–0.88043×T×10-3 | |
电阻率ρ r/Ω?cm | ≤1000℃ | 0.44014 |
1000~1260℃ | lglg ρ r =0.88724–0.52678×T×10-3 | |
≥1260℃ | lglg ρ r =0.88724–0.52678×T×10-3 | |
等效热导率/W?m–1?K–1 | — | 2 |
比热容/J·kg–1?K–1 | — | 1800 |
熔化热/J?kg–1 | 1000~1260℃ | 538000 |
名称 | 温度 | 参数 |
---|---|---|
密度ρ/kg?m–3 | ≤1000℃ | 2760 |
1000~1260℃ | 2942.8–0.1326T | |
≥1260℃ | 2942.8–0.1326T | |
黏度η/Pa·s | ≤1000℃ | 632.9615 |
1000~1260℃ | lglg η =1.5566–0.88043×T×10-3 | |
≥1260℃ | lglg η =1.5566–0.88043×T×10-3 | |
电阻率ρ r/Ω?cm | ≤1000℃ | 0.44014 |
1000~1260℃ | lglg ρ r =0.88724–0.52678×T×10-3 | |
≥1260℃ | lglg ρ r =0.88724–0.52678×T×10-3 | |
等效热导率/W?m–1?K–1 | — | 2 |
比热容/J·kg–1?K–1 | — | 1800 |
熔化热/J?kg–1 | 1000~1260℃ | 538000 |
1 | FIORE V , SCALICI T , BELLA G D , et al . A review on basalt fibre and its composites[J]. Composites Part B, 2015,74:74-94. |
2 | 郭欢, 麻岩, 陈姝娜 . 连续玄武岩纤维的发展及应用前景[J]. 中国纤检, 2010(5): 76-79. |
GUO H , MA Y, CHEN Z N . Development and application prospect of continuous basalt fiber[J]. China Fiber Inspection, 2010(5): 76-79. | |
3 | 李平, 智欧 . 正确认识玄武岩纤维[J]. 玻璃纤维, 2008(3): 35-41. |
LI P , ZHI O . Having right knowledge of basalt fiber[J]. Fiber Glass, 2008(3): 35-41. | |
4 | 胡显奇 . 我国连续玄武岩纤维产业的特征及可持续发展[J]. 高科技纤维与应用, 2012, 37(6): 19-33. |
HU X Q . The characteristic and sustainable development of continuous basalt fiber industry in China[J]. Hi-Tech Fiber & Application, 2012,37(6): 19-33. | |
5 | YAN Q Y , TAN H P , SHANG D K . Physical properties of basalt and numerical simulation of the melting process in basalt particle beds[J]. International Journal of Thermophysics, 2001, 22(3): 995-1015. |
6 | FENG Z J , LI D C , QIN G Q , Study of the float glass melting process combining fluid dynamics simulation and glass homogeneity inspection [J]. Journal of the American Ceramic Society, 2008,91(10): 3229-3234. |
7 | HORST L , DIETER K . Mathematical simulation in glass technology[M]. Heidelberg: Springer, 2002. |
8 | 王刚, 杨国洪, 张峰, 等 . 基于GFM软件的玻璃窑炉数值模拟[J]. 咸阳师范学院学报, 2015, 30(4): 49-51. |
WANG G , YANG G H , ZHANG F , et al . Numerical simulation of glass furnace based on GFM software[J]. Journal of Xianyang Normal University,2015,30(4):49-51. | |
9 | STEPHENS A , CLAYTON T , MAHENDRA, et a1 . Oxygas forehearths:results of mathematical modeling of a flint glass and field trials on a borosilicate glass[J]. Ceramic Engineering&Science Proceeding, 1999, 20(1): 143-154. |
10 | CHOUDHARY M K , VENUTURUMILLI R , HYRE M R . Mathematical modeling of flow and heat transfer phenomena in glass melting, delivery, and forming processes[J]. International Journal of Applied Glass Science, 2010, 1(2): 188-214. |
11 | ABBASSI A , KHOSHMANESH K H . Numerical simulation and experimental analysis of an industrial glass melting furnace[J]. Applied Thermal Engineering, 2008, 28: 450-459. |
12 | SCHILL P . A model example of advanced furnace control[J]. Glass Techno1., 2007, 84(3):20-21. |
13 | CHANG S L , ZHOU C Q , GOLCHERT B . Eulerian approach for multiphase flow simulation in a glass melter[J]. Applied Thermal Engineering, 2005,25:3083-3103. |
14 | JEBAVÁ M , DYRČÍKOVÁ P , NĚMEC L . Modelling of the controlled melt flow in a glass melting space-its melting performance and heat losses[J]. Journal of Non-Crystalline Solids, 2015, 430: 52-63. |
15 | 郭印诚, 林文漪 . 玻璃熔窑预燃室内流动与燃烧计算[J]. 燃烧科学与技术, 2000, 6(2): 146-149. |
GUO Y C , LIN W Y . Numerical modeling of flow and combustion processes in a pre-combustor of glass melting furnace[J]. Journal of Combustion Science and Technology, 2000,6(2):146-149. | |
16 | 刘宗明, 韩韬, 段广彬, 等 . 全氧燃烧玻璃纤维窑炉数值模拟研究[J]. 建筑材料报学报, 2011, 14(2):196-201. |
LIU Z M , HAN T , DUAN G B , et al . Study of numerical simulation of oxygen-fuel combustion of fiber glass furnace[J]. Journal of Building Materials, 2011, 14(2): 196-201. | |
17 | 胡平超, 谢俊, 韩建军,等 . 玻璃纤维窑炉性能探究和优化[J]. 燕山大学学报, 2017, 41(4): 329-334. |
HU P C , XIE J , HAN J J , et al . Research and optimization on performance of glass fiber kilns[J]. Journal of Yanshan University, 2017, 41(4): 329-334. | |
18 | 吕树欣, 刘涌, 宋晨路, 等 . 基于火焰空间与玻璃液热耦合的玻璃熔窑数值模拟[J]. 材料科学与工程学报, 2012, 30(1): 25-28. |
LV S X , LIU Y , SONG C L , et al . Computational study of glass furnace based on thermal coupling between combustion space and liquid glass pool[J]. Journal of Materials Science and Engineering,2012,30(1):25-28. | |
19 | 陈淑勇, 陶天训, 马立云, 等 . 开源软件在玻璃熔窑模拟中的应用[J]. 燕山大学学报, 2017, 41(4): 343-348. |
CHEN S Y , TAO T X , MA L Y, et al . Application of open-source software in glass furnace simulation[J]. Journal of Yanshan University,2017,41(4):343-348. | |
20 | 闫全英, 谈和平, 尚德库, 等 . 玄武岩纤维成型区粘性流动过程的数值模拟[J]. 哈尔滨工业大学学报, 2002,34(1):49-53. |
YAN Q Y , TAN H P , SHANG D K , et al . Numerical simulation of viscosity-flow process of formation of basalt fiber[J]. Journal of Harbin Institute of Technology, 2002,34(1):49-53. | |
21 | 李建军, 刘艳春, 陈继生 . 绿色玄武岩纤维成型的数值模拟方法[J]. 硅酸盐通报, 2008, 27(5):1076-1080. |
LI J J , LIU Y C , CHEN J S , et al . Numerical simulation on green basalt fibrous shaping[J]. Bulletin of The Chinese Ceramic Society,2008,27(5):1076-1080. | |
22 | IVANITSKII S G , GORBACHEV G F . Continuous basalt fibers: production aspects and simulation of forming processes. II. Optimizing the fiber production technology through simulation of heat-exchange processes in bushing nozzles[J]. Powder Metallurgy and Metal Ceramics, 2011, 50(5/6):249-255. |
23 | PATANKAR S V . Numerical heat transfer and fluid flow[M].New York:Hemisphere Publishing Corporation, Taylor & Francis Group, 1980. |
24 | Inc. FLUENT . FLUENT User’s Guide[Z]. USA: FLUENT Inc., 2006. |
25 | VERSTEEG H K , MALALASEKERA W . An introduction to computational fluid dynamics: the finite volume method[M]. Upper Saddle River, NJ:Prentice Hall, 1995. |
26 | PETRICK M , CHANG S , GOLCHERT B , et al . Coupled combustion space/glass melt furnace simulation[C]// CHARLES H D. 61st Conference on Glass Problems. Westerville: The American Ceramic Society, 2000:247-264. |
27 | SHI J , CHEN Z Q , SHAO S , et al . Experimental and numerical study on effective thermal conductivity of novel form-stable basalt fiber composite concrete with PCMs for thermal storage[J]. Applied Thermal Engineering, 2014,66:156-161. |
28 | MOSTAFA M S , AFIFY N , GABER A , et al . Investigation of thermal properties of some basalt samples in Egypt[J]. Journal of Thermal Analysis and Calorimetry, 2004, 75: 179-188. |
29 | BOUHIFD M A , BESSON P , COURTIAL P , et al . Thermochemistry and melting properties of basalt[J]. Contrib. Mineral Petrol., 2007,153:689-698. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |