Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 925-936.DOI: 10.16085/j.issn.1000-6613.2023-0268
• Chemical processes and equipment • Previous Articles Next Articles
DENG Lei(), YUAN Maobo, YANG Jiahui, YUE Yang, JIANG Jiahao, CHE Defu()
Received:
2023-02-27
Revised:
2023-04-27
Online:
2024-03-07
Published:
2024-02-25
Contact:
CHE Defu
邓磊(), 袁茂博, 杨家辉, 岳洋, 姜家豪, 车得福()
通讯作者:
车得福
作者简介:
邓磊(1983—),男,副教授,博士生导师,研究方向为燃烧及其污染物控制。E-mail:leideng@xjtu.edu.cn。
基金资助:
CLC Number:
DENG Lei, YUAN Maobo, YANG Jiahui, YUE Yang, JIANG Jiahao, CHE Defu. High-temperature corrosion prediction model of water-cooled wall for boiler peak regulation[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 925-936.
邓磊, 袁茂博, 杨家辉, 岳洋, 姜家豪, 车得福. 适应锅炉调峰运行的水冷壁高温腐蚀预测模型[J]. 化工进展, 2024, 43(2): 925-936.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0268
负荷 | 给煤量/t·h-1 | 燃烧器层数(摆角) | 过量空气系数(主燃区) | 一次风率 |
---|---|---|---|---|
35% BMCR | 95.7 | B-C(20o) | 1.47(1.00) | 0.18 |
50% THA | 113.0 | A-C(10o) | 1.37(0.95) | 0.20 |
75% THA | 164.4 | B-E(0o) | 1.33((0.90) | 0.24 |
100% BMCR | 240.0 | A-E(-10o) | 1.20(0.85) | 0.22 |
负荷 | 给煤量/t·h-1 | 燃烧器层数(摆角) | 过量空气系数(主燃区) | 一次风率 |
---|---|---|---|---|
35% BMCR | 95.7 | B-C(20o) | 1.47(1.00) | 0.18 |
50% THA | 113.0 | A-C(10o) | 1.37(0.95) | 0.20 |
75% THA | 164.4 | B-E(0o) | 1.33((0.90) | 0.24 |
100% BMCR | 240.0 | A-E(-10o) | 1.20(0.85) | 0.22 |
工业分析/% | 元素分析/% | Qnet,ar/MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
war(FC) | war(M) | wdaf(V) | war(A) | war(C) | war(N) | war(S) | war(O) | war(H) | |
50.38 | 14.50 | 35.00 | 8.00 | 62.83 | 0.70 | 0.41 | 9.94 | 3.62 | 22.76 |
工业分析/% | 元素分析/% | Qnet,ar/MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
war(FC) | war(M) | wdaf(V) | war(A) | war(C) | war(N) | war(S) | war(O) | war(H) | |
50.38 | 14.50 | 35.00 | 8.00 | 62.83 | 0.70 | 0.41 | 9.94 | 3.62 | 22.76 |
序号 | 总包反应 | 反应速率 |
---|---|---|
1 | H2S+1.5O2 | r1 |
2 | H2S+2H2O | r2 |
3 | H2S+CO2 | r3 |
4 | H2S+CO | r4 |
5 | COS+1.5O2 | r5 |
6 | COS+H2 | r6 |
7 | COS+2CO2 | r7 |
8 | COS+H2O | r8 |
9 | SO2+3H2 | r9 |
10 | SO2+3CO | r10 |
序号 | 总包反应 | 反应速率 |
---|---|---|
1 | H2S+1.5O2 | r1 |
2 | H2S+2H2O | r2 |
3 | H2S+CO2 | r3 |
4 | H2S+CO | r4 |
5 | COS+1.5O2 | r5 |
6 | COS+H2 | r6 |
7 | COS+2CO2 | r7 |
8 | COS+H2O | r8 |
9 | SO2+3H2 | r9 |
10 | SO2+3CO | r10 |
项目 | 水冷壁吸热量/MW | 炉膛出口氧体积分数/% | 后屏出口烟温/K | 前墙中心H2S浓度/μL∙L-1 | ||
---|---|---|---|---|---|---|
25m | 29m | 35m | ||||
实测值 | 610 | 3.72 | 1356 | 348 | 134 | 203 |
模拟值 | 659 | 3.62 | 1291 | 321 | 145 | 186 |
偏差/% | 7.50 | 2.76 | 4.79 | 7.76 | 8.21 | 8.37 |
项目 | 水冷壁吸热量/MW | 炉膛出口氧体积分数/% | 后屏出口烟温/K | 前墙中心H2S浓度/μL∙L-1 | ||
---|---|---|---|---|---|---|
25m | 29m | 35m | ||||
实测值 | 610 | 3.72 | 1356 | 348 | 134 | 203 |
模拟值 | 659 | 3.62 | 1291 | 321 | 145 | 186 |
偏差/% | 7.50 | 2.76 | 4.79 | 7.76 | 8.21 | 8.37 |
函数 | 功能 | 输入与输出 |
---|---|---|
deal_data | 对Fluent导出的三维热流密度分布数据进行重构处理 | 输入:热流密度分布/锅炉结构参数/水动力单元密度 |
输出:重构热流密度矩阵/重构前热流密度坐标参数 | ||
equs | 设置一维水动力计算方程组 | 输入:总质量流量/水动力单元密度/管壁结构参数/压降初值/回路的物性参数 |
输出:用于判断方程收敛的一维数组 | ||
super_sumdv sub_sumdv | 超临界和亚临界工况下水动力回路物性参数计算 | 输入:流量/水动力网格密度/工作压力/工质初始焓值 |
输出:所有单元内工质密度和比体积 | ||
solve_newton | 离散牛顿法求解水动力方程组 | 输入:初始解/步长/工质物性参数/管壁结构参数 |
输出:水动力方程组的一组解以及迭代次数 | ||
super_massflow sub_massflow | 超临界和亚临界工况下各回路质量流量计算 | 输入:deal_data输出的热流密度/solve_newton的输入 |
输出:各回路质量流量和总压降 | ||
super_temp sub_temp | 超临界和亚临界工况下水冷壁壁温分布计算 | 输入:deal_data的输出/各回路质量流量/管壁结构参数 |
输出:水冷壁壁温分布 |
函数 | 功能 | 输入与输出 |
---|---|---|
deal_data | 对Fluent导出的三维热流密度分布数据进行重构处理 | 输入:热流密度分布/锅炉结构参数/水动力单元密度 |
输出:重构热流密度矩阵/重构前热流密度坐标参数 | ||
equs | 设置一维水动力计算方程组 | 输入:总质量流量/水动力单元密度/管壁结构参数/压降初值/回路的物性参数 |
输出:用于判断方程收敛的一维数组 | ||
super_sumdv sub_sumdv | 超临界和亚临界工况下水动力回路物性参数计算 | 输入:流量/水动力网格密度/工作压力/工质初始焓值 |
输出:所有单元内工质密度和比体积 | ||
solve_newton | 离散牛顿法求解水动力方程组 | 输入:初始解/步长/工质物性参数/管壁结构参数 |
输出:水动力方程组的一组解以及迭代次数 | ||
super_massflow sub_massflow | 超临界和亚临界工况下各回路质量流量计算 | 输入:deal_data输出的热流密度/solve_newton的输入 |
输出:各回路质量流量和总压降 | ||
super_temp sub_temp | 超临界和亚临界工况下水冷壁壁温分布计算 | 输入:deal_data的输出/各回路质量流量/管壁结构参数 |
输出:水冷壁壁温分布 |
1 | 丁仲礼. 中国碳中和框架路线图研究[J]. 中国工业和信息化, 2021(8): 54-61. |
DING Zhongli. Study on the roadmap of carbon neutralization framework in China[J]. China Industry and Information Technology, 2021(8): 54-61. | |
2 | 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. [2023-02-28]. http://www.gov.cn/shuju/2023-02/28/content_5743623.htm. |
National Bureau of Statistics. Statistical communique of the People's Republic of China on the 2022 national economic and social development[R]. [2023-02-28]. http://www.gov.cn/shuju/2023-02/28/content_5743623.htm. | |
3 | 白旭东, 王建勋. 330MW锅炉配风方式对NO x 排放浓度和锅炉经济性的影响分析[J]. 化工进展, 2021, 40(S2): 25-29. |
BAI Xudong, WANG Jianxun. Experimental research of influence of air distribution for a W-flame boiler on NO x emission and economical operation[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 25-29. | |
4 | 石荣雪, 张适宜, 张胜寒. 基于大数据分析的电厂锅炉水冷壁失效研究[J]. 化工进展, 2016, 35(9): 2640-2646. |
SHI Rongxue, ZHANG Shiyi, ZHANG Shenghan. Failure investigation on boiler water wall tubes in power plant by large data analysis[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2640-2646. | |
5 | SUN Xu, NING Yuheng, YANG Jian, et al. Study on high temperature corrosion mechanism of water wall tubes of 350MW supercritical unit[J]. Engineering Failure Analysis, 2021, 121: 105131. |
6 | XIONG Xiaohe, LIU Xing, TAN Houzhang, et al. Investigation on high temperature corrosion of water-cooled wall tubes at a 300MW boiler[J]. Journal of the Energy Institute, 2020, 93(1): 377-386. |
7 | 于英利, 付旭晨, 戴莹莹, 等. 燃煤电站锅炉水冷壁壁面高温腐蚀问题分析与对策[J]. 化工进展, 2020, 39(S1): 90-96. |
YU Yingli, FU Xuchen, DAI Yingying, et al. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. | |
8 | 王新宇, 黄亚继, 徐力刚, 等. 调节同层二次风以缓解双切圆锅炉高温腐蚀的数值模拟[J]. 化工进展, 2022, 41(5): 2292-2300. |
WANG Xinyu, HUANG Yaji, XU Ligang, et al. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. | |
9 | KUNG S C. Further understanding of furnace wall corrosion in coal-fired boilers[J]. Corrosion, 2014, 70(7): 749-763. |
10 | XU Hong, ZHOU Shangkun, ZHU Yiming, et al. Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1956-1964. |
11 | YUAN Maobo, DENG Lei, ZHANG Jingkun, et al. Prediction of H2S corrosion depth for water-cooled wall in lower furnace of utility boiler[J]. Fuel, 2022, 329: 125466. |
12 | YUAN Maobo, LIU Hu, WU Ying, et al. Coordinate transformation method for heat reallocation in the spiral water-cooled wall temperature calculation[J]. International Journal of Thermal Sciences, 2022, 177: 107557. |
13 | YUAN Maobo, DENG Lei, LIU Hu, et al. Numerical investigation on H2S formation characteristics in air-staging combustion of a tangentially coal-fired boiler[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2022, 44(1): 1854-1863. |
14 | AL-ABBAS A H, NASER J, DODDS D. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station[J]. Fuel, 2012, 102: 646-665. |
15 | LIU Hu, ZHANG Lei, LI Qianqian, et al. Effect of FGR position on the characteristics of combustion, emission and flue gas temperature deviation in a 1000MW tower-type double-reheat boiler with deep-air-staging[J]. Fuel, 2019, 246: 285-294. |
16 | ZHU Tao, NING Xing, TANG Chunli, et al. Numerical investigation on combustion and NO x formation characteristics under deep-staging conditions within a cyclone barrel[J]. Fuel, 2022, 313: 122714. |
17 | LI Zhenshan, CHEN Hu, ZHANG Zhi. Experimental and modeling study of H2S formation and evolution in air staged combustion of pulverized coal[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5363-5371. |
18 | 王为术. 超(超)临界锅炉内螺纹水冷壁管流动传热与水动力特性[M]. 北京: 中国电力出版社, 2012: 137-139. |
WANG W S. Flow, heat transfer and hydrodynamic characteristics of internal thread water wall tube in supercritical boiler[M]. Beijing: China Electric Power Press, 2012: 137-139. | |
19 | EDGE P J, HEGGS P J, POURKASHANIAN M, et al. An integrated computational fluid dynamics-process model of natural circulation steam generation in a coal-fired power plant[J]. Computers & Chemical Engineering, 2011, 35(12): 2618-2631. |
20 | QI Jing, ZHOU Keyi, HUANG Junlin, et al. Numerical simulation of the heat transfer of superheater tubes in power plants considering oxide scale[J]. International Journal of Heat and Mass Transfer, 2018, 122: 929-938. |
21 | HUANG Dan, WU Zan, SUNDEN Bengt, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
22 | WANG Jizhou, ZHANG Yanping, LI Yu, et al. A non-equal fragment model of a water-wall in a supercritical boiler[J]. Journal of the Energy Institute, 2015, 88(2): 143-150. |
23 | ZHANG Wei, WANG Huan, YAN Kai, et al. Mathematical modeling and thermal-hydrodynamic analysis of vertical water wall in a SCFB boiler with annular furnace[J]. Applied Thermal Engineering, 2016, 102: 742-748. |
24 | 熊小鹤, 吕钊敏, 阮仁晖, 等. 某切圆燃烧锅炉水冷壁高温腐蚀现象及其与H2S含量的关系研究[J]. 广东电力, 2022, 35(7): 107-113. |
XIONG Xiaohe, Zhaomin LYU, RUAN Renhui, et al. Water wall high-temperature corrosion of tangentially fired boiler and the correlation with hydrogen sulfide concentration[J]. Guangdong Electric Power, 2022, 35(7): 107-113. | |
25 | 孟繁兵, 高松. 四角切圆锅炉硫化氢生成特性的研究[J]. 黑龙江电力, 2019, 41(1): 87-90. |
MENG Fanbing, GAO Song. Study on generation characteristics of H2S in tangentially fired boiler[J]. Heilongjiang Electric Power, 2019, 41(1): 87-90. | |
26 | 项岱军, 王煜伟, 王小华, 等. 锅炉不同配风方式下炉内高温腐蚀影响特性研究与运行防控[J]. 锅炉技术, 2021, 52(4): 8-11, 42. |
XIANG Daijun, WANG Yuwei, WANG Xiaohua, et al. Study on high temperature corrosion characteristics in boiler under different air distribution modes and operation prevention and control[J]. Boiler Technology, 2021, 52(4): 8-11, 42. |
[1] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[2] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[3] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[4] | HA Wen, YANG Yang, TANG Yu, CAO Di, ZHANG Chao, YANG Bin. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768-780. |
[5] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[6] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[9] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[12] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[15] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |