Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 60-75.DOI: 10.16085/j.issn.1000-6613.2023-1069

• Column: Chemical process intensification • Previous Articles     Next Articles

Progress in the mechanism of CH4 and CO2co-conversion reactions

CHENG Haolin1(), NIAN Yao1,2(), HAN You1,2()   

  1. 1.College of Chemical Engineering, Tianjin University, Tianjin 300072, China
    2.Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
  • Received:2023-06-28 Revised:2023-08-15 Online:2024-02-05 Published:2024-01-20
  • Contact: NIAN Yao, HAN You

CH4和CO2共转化反应机理研究进展

成昊霖1(), 年瑶1,2(), 韩优1,2()   

  1. 1.天津大学化工学院,天津 300072
    2.物质绿色创造与制造海河实验室,天津 300192
  • 通讯作者: 年瑶,韩优
  • 作者简介:成昊霖(2000—),男,硕士研究生,研究方向为理论催化。E-mail:chenghaolin@tju.edu.cn
  • 基金资助:
    国家自然科学基金(21978210);中国博士后科学基金(2022M722360);天津大学自主创新基金(2023XQM-0012)

Abstract:

This review provides a comprehensive overview of the reaction pathways involved in the co-conversion of CH4 and CO2 to produce syngas, acetic acid, and C2 hydrocarbons. The focus is on elucidating the key reaction steps, intermediates, and the influencing factors on reaction selectivity. For the production of syngas, the activation and dissociation of CO2 and CH4 are identified as key steps. The mechanism depends on the acidity of the catalyst support. Acidic or neutral support follow a mono-functional mechanism, where both CH4 and CO2 are activated at the same active center. In contrast, a basic support leads to a bi-functional mechanism, involving the activation of CH4 and CO2 at different active centers. For acetic acid production, the C-C coupling process assumes to be significant. Two mechanisms are considered: the direct insertion of gas-phase CO2 into the M—CH3 bond (Eley-Rideal mechanism), and the prior adsorption of CO2 followed by insertion (Langmuir-Hinshelwood mechanism), with a lower reaction energy barrier for the latter. For producing C2 hydrocarbons, reactive oxygen species are considered to be key intermediates in the reaction, which may be derived from the activation and dissociation of lattice oxygen or CO2 in the catalyst. To enhance the catalytic performance, constructing multiple active sites on the catalyst surface for the co-catalysis of CH4 and CO2 is regarded as a promising catalyst modification strategy. Furthermore, advanced simulation calculation methods and in-situ characterization techniques can help to reveal the dynamic evolution of reaction process and the catalytic mechanism, thus providing the theoretical guidance for the design of catalysts in the CH4 and CO2co-conversion reaction.

Key words: methane, carbon dioxide, reaction mechanism, syngas, acetic acid, C2 hydrocarbons

摘要:

综述了CH4和CO2共转化生成合成气、乙酸和C2烃3种反应路径的反应步骤、关键中间体及反应产物选择性的影响因素。当生成合成气时,CH4与CO2的活化解离是关键步骤,催化剂载体表面为酸性或中性时反应遵循单功能机理,CH4和CO2在同一活性中心被活化,当载体为表面碱性时,CH4和CO2遵循双功能机理,在不同活性中心被活化,通常双功能机理的催化效率更高。当生成乙酸时,C-C耦合过程应被重点关注,该过程中气相CO2可能直接插入M—CH3键(Eley-Rideal机理)或先被吸附活化后再插入(Langmuir-Hinshelwood机理),后者反应能垒更低。当生成C2烃时,活性氧物种被认为是反应过程中的关键中间体,其可能来源于催化剂中的晶格氧或CO2的活化与解离。因此,在催化剂表面构建多个独立活性位点,以分别对CH4和CO2进行多位点协同催化被认为是良好的催化剂改性策略。另外,先进的模拟计算方法和原位表征手段能够深入揭示反应过程中催化剂和反应中间体的动态演变过程及机理,从而为真实CH4和CO2共转化反应过程中催化剂的设计提供理论指导。

关键词: 甲烷, 二氧化碳, 反应机理, 合成气, 乙酸, C2

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd