Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 364-375.DOI: 10.16085/j.issn.1000-6613.2023-0257
• Energy processes and technology • Previous Articles
XIA Yinping1,2(), LI Zhoupeng1,2(), WANG Qianqian1,2()
Received:
2023-02-24
Revised:
2023-06-01
Online:
2024-02-05
Published:
2024-01-20
Contact:
LI Zhoupeng, WANG Qianqian
通讯作者:
李洲鹏,汪倩倩
作者简介:
夏银萍(1997—),女,硕士研究生,研究方向为高载量锂硫电池正极设计。E-mail:13282808233@163.com。
基金资助:
CLC Number:
XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375.
夏银萍, 李洲鹏, 汪倩倩. 高载量锂硫电池正极设计优化[J]. 化工进展, 2024, 43(1): 364-375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0257
25 | CHENG Juanjuan, SONG Hongjia, PAN Yong, et al. 3D copper foam/bamboo charcoal composites as high sulfur loading host for lithium-sulfur batteries[J]. Ionics, 2018, 24(12): 4093-4099. |
26 | SONG Yan, LI Xiuyuan, HE Chaozheng. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries[J]. Chinese Chemical Letters, 2021, 32(3): 1106-1110. |
27 | NAKAMURA Natsuki, YOKOSHIMA Tokihiko, NARA Hiroki, et al. High-rate and high sulfur-loaded lithium-sulfur batteries with a polypyrrole-coated sulfur cathode on a 3D aluminum foam current collector[J]. Materials Letters, 2021, 285: 129115. |
28 | CHUNG Shengheng, CHANG Chihao, MANTHIRAM Arumugam. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries[J]. Small, 2016, 12(7): 939-950. |
29 | ZHANG Yezheng, ZHANG Ze, LIU Sheng, et al. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8749-8757. |
30 | RACHEL Carter, BENJAMIN Davis, LANDON Oakes, et al. A high areal capacity lithium-sulfur battery cathode prepared by site-selective vapor infiltration of hierarchical carbon nanotube arrays[J]. Nanoscale, 2017, 9(39): 15018-15026. |
31 | 张明, 王志勇, 罗琴, 等. 基于高活性碳纳米管海绵体载硫的锂硫电池[J]. 材料研究学报, 2021, 35(1): 65-71. |
ZHANG Ming, WANG Zhiyong, LUO Qin, et al. Highly activated carbon nanotube sponges deposited with sulfur for lithium-sulfur batteries[J]. Chinese Journal of Materials Research, 2021, 35(1): 65-71. | |
32 | CHIOCHAN Poramane, KOSASANG Soracha, MA Nattapol, et al. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries[J]. Carbon, 2020, 158: 244-255. |
33 | CHENG Qi, YIN Zhouhong, PAN Zhenxiao, et al. Lightweight free-standing 3D nitrogen-doped graphene/TiN aerogels with ultrahigh sulfur loading for high energy density Li-S batteries[J]. ACS Applied Energy Materials, 2021, 4(8): 7599-7610. |
34 | YE Kefen, XIA Yinping, LI Rui, et al. A novel insight into deterioration of heavily sulfur-loaded cathode in Li-S battery[J]. Electrochimica Acta, 2022, 435: 141387. |
35 | YAN Longlong, GAO Xiguang, Joseph Palathinkal Thomas, et al. Ionically cross-linked PEDOT: PSS as a multi-functional conductive binder for high-performance lithium-sulfur batteries[J]. Sustainable Energy & Fuels, 2018, 2(7): 1574-1581. |
36 | YU Heli, BI Mingzhu, ZHANG Cuijuan, et al. Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries[J]. Electrochimica Acta, 2022, 428: 140908. |
37 | CHOI Sungsik, KIM Soochan, CHO Misuk, et al. Durable conductive webs as multifunctional binder for the high-performance lithium-sulfur battery[J]. ACS Applied Energy Materials, 2020, 3(8): 7825-7831. |
38 | YUAN Yan, LI Zhengqian, PENG Xiuping, et al. Functional gel cathode strategy to enhance the long-term cyclability of the lithium-polysulfide full cell[J]. Electrochimica Acta, 2022, 410: 140052. |
39 | ZHANG Shijie, ZHANG Yongshang, SHAO Guosheng, et al. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions[J]. Nano Research, 2021, 14(11): 3942-3951. |
40 | CHEN Wei, LEI Tianyu, Weiqiang LYU, et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery[J]. Advanced Materials, 2018, 30(40): 1804084. |
41 | ZHANG Hong, HU Xuanhe, ZHANG Yi, et al. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 17: 293-299. |
42 | WANG Hui, YANG Yu, ZHENG Peitao, et al. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 395: 124981. |
43 | 张梦迪, 陈蓓, 吴明铂. 石墨烯作为硫载体在锂硫电池中的研究进展[J]. 物理化学学报, 2022, 38(2): 55-67. |
ZHANG Mengdi, CHEN Bei, WU Mingbo. Research progress in graphene as sulfur hosts in lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 55-67. | |
44 | NGUYEN T T, BALAMURUGAN J, GO H W, et al. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries[J]. Chemical Engineering Journal, 2022, 427: 131774. |
45 | SHEN Jiadong, XU Xijun, LIU Jun, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019, 13(8): 8986-8996. |
46 | XUE Weijiang, SHI Zhe, SUO Liumin, et al. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
47 | XU Huifang, JIANG Qingbin, ZHANG Bingkai, et al. Integrating conductivity, immobility, and catalytic ability into high-N carbon/graphene sheets as an effective sulfur host[J]. Advanced Materials, 2020, 32(7): 1906357. |
48 | ZHAO Changxin, LI Xiyao, ZHAO Meng, et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2021, 143(47): 19865-19872. |
49 | HU Xuanhe, JIAN Junhua, FANG Zhengsong, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: Fully-exposed porphyrin matters[J]. Energy Storage Materials, 2019, 22: 40-47. |
50 | HU Xuanhe, ZHONG Linfeng, SHU Chenhao, et al. Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups[J]. Journal of the American Chemical Society, 2020, 142(10): 4621-4630. |
51 | LI Lu, CHEN Long, MUKHERJEE Sankha, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(2): 1602734. |
52 | FAN Qianqian, LI Baohua, SI Yubing, et al. Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li-S batteries[J]. Chemical Communications, 2019, 55(53): 7655-7658. |
53 | 王晶晶, 曹贵强, 段瑞贤, 等. 金属单原子催化剂增强硫正极动力学的研究进展[J]. 物理化学学报, 2023, 39(5): 49-66. |
WANG Jingjing, CAO Guiqiang, DUAN Ruixian, et al. Advances in single metal atom catalysts enhancing kinetics of sulfur cathode[J]. Acta Physico-Chimica Sinica, 2023, 39(5): 49-66. | |
54 | LI Yuanjian, WU Jiabin, ZHANG Bao, et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Materials, 2020, 30: 250-259. |
55 | WANG Li, HU Zhonghao, WAN Xiang, et al. Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery[J]. Advanced Energy Materials, 2022, 12(20): 2200340. |
56 | ZHOU Fei, LI Zheng, LUO Xuan, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018, 18(2): 1035-1043. |
57 | ZHANG Kun, LI Xing, YANG Yong, et al. High loading sulfur cathodes by reactive-type polymer tubes for high-performance lithium-sulfur batteries [J]. Advanced Functional Materials, 2023, 33: 2212759. |
58 | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. | |
59 | 曾攀, 袁程, 刘根林, 等. 调控电催化剂电子结构促进锂硫电池多硫化物催化转化的研究进展[J]. 催化学报, 2022, 43(12): 2946-2965. |
ZENG Pan, YUAN Cheng, LIU Genlin, et al. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries[J]. Chinese Journal of Catalysis, 2022, 43(12): 2946-2965. | |
60 | TAN Guoqiang, XU Rui, XING Zhenyu, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2(7): 1-10. |
61 | SU Yusheng, MANTHIRAM Arumugam. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications, 2012, 48(70): 8817-8819. |
62 | QUAY Yeejun, CHUNG Shengheng. Structural and surfacial modification of carbon nanofoam as an interlayer for electrochemically stable lithium-sulfur cells[J]. Nanomaterials, 2021, 11(12): 3342. |
63 | ZUO Yinze, ZHU Yuejin, TANG Xinsong, et al. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2020, 464: 228181. |
64 | ZHU Tuyuan, SHA Ying, ZHANG Huiwen, et al. Embedding Fe3C and Fe3N on a nitrogen-doped carbon nanotube as a catalytic and anchoring center for a high-areal-capacity Li-S battery[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20153-20161. |
65 | YAN Wenqi, GAO Xiangwen, YANG Jinlin, et al. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries[J]. Small, 2022, 18(11): 2106679. |
66 | RANA Masud, LI Ming, HE Qiu, et al. Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 44: 51-60. |
67 | HE Yibo, QIAO Yu, CHANG Zhi, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie, 2019, 131(34): 11900-11904. |
68 | WANG Ziqi, HUANG Weiyuan, HUA Jiachuan, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries[J]. Small Methods, 2020, 4(7): 2000082. |
69 | GENG Mengzi, YANG Hangqi, SHANG Chaoqun. The multi-functional effects of CuS as modifier to fabricate efficient interlayer for Li-S batteries[J]. Advanced Science, 2022, 9(35): 2204561. |
70 | 段旭彬, 李庆福, 卫慧凯. 锂硫电池穿梭效应抑制及解决途径的研究进展[J]. 电池, 2019, 49(5): 427-430. |
DUAN Xubin, LI Qingfu, WEI Huikai. Research progress in inhibiting shuttle effect of lithium-sulfur battery and its solving countermeasures[J]. Battery Bimonthly, 2019, 49(5): 427-430. | |
71 | HSIA Tingnan, LU Hsinchun, HSUEH Yuchih, et al. Superdry poly(vinylidene fluoride-co-hexafluoropropylene) coating on a lithium anode as a protective layer and separator for a high-performance lithium-oxygen battery[J]. Journal of Colloid and Interface Science, 2022, 626: 524-534. |
72 | XIANG Xing, ZHANG Yanhua, WANG Huihu, et al. Improving the interfacial contact between Li7La3Zr2O12 and lithium anode by depositing a film of silver[J]. Journal of the Electrochemical Society, 2021, 168(6): 060515. |
73 | HUANG Haifeng, GUI Yina, SUN Fu, et al. In situ formed three-dimensional (3D) lithium-boron (Li-B) alloy as a potential anode for next-generation lithium batteries[J]. Rare Metals, 2021, 40(12): 3494-3500. |
74 | LIANG Xiao, WEN Zhaoyin, LIU Yu, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843. |
75 | LI Rong, YANG Liwen, SONG Lei, et al. A thin LiGa alloy layer from in situ electroreduction to suppress anode dendrite formation in lithium-sulfur pouch cell[J]. Chemical Engineering Journal, 2023, 455: 140707. |
76 | HUANG Xueyan, XUE Jianjun, XIAO Min, et al. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells[J]. Energy Storage Materials, 2020, 30: 87-97. |
77 | HUANG Lang, LU Tao, XU Gaojie, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries[J]. Joule, 2022, 6(4): 906-922. |
78 | JIANG Fengni, YANG Shijie, CHEN Zixian, et al. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells[J]. Particuology, 2023, 79: 10-17. |
1 | 徐雁波, 张强, 张姗姗, 等. 锂硫电池的研究现状及进展[J]. 电源技术, 2022, 46(3): 233-236. |
XU Yanbo, ZHANG Qiang, ZHANG Shanshan, et al. Research status and progress of lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2022, 46(3): 233-236. | |
2 | HE Mengxue, LI Yaqi, LIU Songsong, et al. Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries[J]. Chemical Communications, 2020, 56(73): 10758-10761. |
3 | 刘帅, 姚路, 章琴, 等. 高性能锂硫电池研究进展[J]. 物理化学学报, 2017, 33(12): 2339-2358. |
LIU Shuai, YAO Lu, ZHANG Qin, et al. Advances in high-performance lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2339-2358. | |
4 | HU Yin, CHEN Wei, LEI Tianyu, et al. Strategies toward high-loading lithium-sulfur battery[J]. Advanced Energy Materials, 2020, 10(17): 2000082. |
5 | YUAN Hong, PENG Hongjie, LI Boquan, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(1): 1802768. |
6 | CHUNG Shengheng, CHANG Chihao, MANTHIRAM Arumugam. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Advanced Functional Materials, 2018, 28(28): 1801188. |
7 | 韩付超, 李福进, 陈良, 等. CoSe2/C复合电催化材料修饰隔膜对高载量锂硫电池性能的影响[J]. 高等学校化学学报, 2022, 43(8): 161-169. |
HAN Fuchao, LI Fujin, CHEN Liang, et al. Enhance of CoSe2/C composites modified separator on electrochemical performance of Li-S batteries at high sulfur loading[J]. Chemical Journal of Chinese Universities, 2022, 43(8): 161-169. | |
8 | CHUNG Shengheng, MANTHIRAM Arumugam. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019, 31(27): e1901125. |
9 | LIU Yatao, LIU Sheng, LI Guoran, et al. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(8): e2003955. |
10 | YANG Xiaofei, LI Xia, ADAIR Keegan, et al. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, 1(3): 239-293. |
11 | 芦涛, 韩鹏献, 张增奇, 等. 高载硫量锂硫电池[J]. 电池工业, 2022, 26(3): 145-154. |
LU Tao, HAN Pengxian, ZHANG Zengqi, et al. Lithium sulfur batteries with high-loading sulfur cathode[J]. Chinese Battery Industry, 2022, 26(3): 145-154. | |
12 | SU Li, ZHANG Jinqiang, CHEN Yi, et al. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries[J]. Nano Energy, 2021, 85: 105981. |
13 | YU Jian, XIAO Jiewen, LI Anran, et al. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries[J]. Angewandte Chemie International Edition, 2020, 59(31): 13071-13078. |
14 | YAO Weiqi, ZHENG Weizhong, XU Jie, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15(4): 7114-7130. |
15 | Suefaye NG, LAU Michelle Yuling, Weejun ONG. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion[J]. Advanced Materials, 2021, 33(50): 2008654. |
16 | YU Chunwei, TSAI Chojen. Ti4O7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method[J]. MRS Energy & Sustainability, 2022, 9(2): 369-377. |
17 | Julian KEY, FENG Yong, SHEN Jiaqi, et al. A highly crosslinked and conductive sulfur-rich copolymer with grafted polyaniline for stable cycling lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2020, 167(2): 020530. |
18 | 张会双, 李向南, 田栓宝, 等. 导电聚合物膜修饰的锂硫电池及其性能研究[J]. 电源技术, 2018, 42(11): 1646-1648. |
ZHANG Huishuang, LI Xiangnan, TIAN Shuanbao, et al. Conducting polymers membrane modified lithium sulfur batteries and its electrochemical performance[J]. Chinese Journal of Power Sources, 2018, 42(11): 1646-1648. | |
19 | CHENG Zhibin, PAN Hui, WU Ziyuan, et al. Cu-Mo bimetal modulated multifunctional carbon nanofibers promoting the polysulfides conversion for high-sulfur-loading lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45688-45696. |
20 | 蔡诗怡, 李津瑜, 吴丽霞, 等. 金属有机框架材料在锂硫电池的应用前沿进展[J]. 化工进展, 2021, 40(6): 3046-3057. |
CAI Shiyi, LI Jinyu, WU Lixia, et al. Progress of MOF materials applied in Li-S batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3046-3057. | |
21 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
22 | ZHAO Meng, PENG Yanqi, LI Boquan, et al. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 56: 203-208. |
23 | 吴强, 张薇, 余创, 等. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175. |
WU Qiang, ZHANG Wei, YU Chuang, et al. Research progress of sulfur cathode with high sulfur content for lithium-sulfur batteries [J]. Materials Reports, 2023, 37(15): 21100175. | |
24 | MAO Heng, LIU Limin, SHI Lei, et al. High loading cotton cellulose-based aerogel self-standing electrode for Li-S batteries[J]. Science Bulletin, 2020, 65(10): 803-811. |
79 | HOU Ruohan, ZHANG Shijie, ZHANG Yongshang, et al. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(19): 2200302. |
80 | CHEN Peng, WU Zhen, GUO Tong, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials, 2021, 33(9): 2007549. |
81 | ZHU Kaiping, XUE Pan, CHENG Guanjian, et al. Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 43: 130-142. |
[1] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[8] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[9] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[10] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[11] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[12] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[13] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[14] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[15] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |