Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4929-4938.DOI: 10.16085/j.issn.1000-6613.2022-1921
• Resources and environmental engineering • Previous Articles Next Articles
SHAO Zhiguo1(), REN Wen1, XU Shipei1,2(), NIE Fan1, XU Yu1, LIU Longjie1, XIE Shuixiang1, LI Xingchun1, WANG Qingji1, XIE Jiacai1
Received:
2022-10-17
Revised:
2022-12-07
Online:
2023-09-28
Published:
2023-09-15
Contact:
XU Shipei
邵志国1(), 任雯1, 许世佩1,2(), 聂凡1, 许毓1, 刘龙杰1, 谢水祥1, 李兴春1, 王庆吉1, 谢加才1
通讯作者:
许世佩
作者简介:
邵志国(1982—),男,博士,高级工程师,研究方向为含油固体废物处理与资源化技术。E-mail:shaozhiguo003@163.com。
基金资助:
CLC Number:
SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938.
邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1921
分类 | 处理方法 | 目标污染物 | 初始污染物浓度/g·kg-1 | 去除率/% | 参考文献 |
---|---|---|---|---|---|
生物处理 | 鼠李糖脂增强洗涤 | TPH | 5.939 | 76.8 | [ |
堆肥、牛胆汁和细菌培养的组合 | TPH | 30 | 99.7 | [ | |
溶剂清洗后生物处理 | TPH | 16.5 | 87.1 | [ | |
生物表面活性剂基洗涤与生物降解结合 | TPH | 85 | 85.1 | [ | |
高级氧化 | 电动力-Fenton氧化 | TPH | 316 | 77.0 | [ |
超临界水氧化 | PAHs | 290 | 91.0 | [ | |
超临界水氧化 | TOC | 200 | 83.9 | [ | |
近/超临界水氧化 | TOC | 200 | 69.5 | [ | |
以城市污水污泥为稀释剂超临界水氧化 | TOC | 200 | 98.4 | [ | |
脉冲介电势垒放电等离子体 | 油 | 165.372 | 61.8 | [ | |
脱硫化分离-芬顿氧化反应的结合 | TPH | 93.8 | 85.1 | [ | |
热解处理 | 微波热解 | TPH | 67.8 | 98.5 | [ |
微波热解 | TPH | 160 | 95.0 | [ | |
与聚氯乙烯共热解 | 油 | 34.7 | 93.5 | [ | |
与酒糟共热解 | 油 | 68.9 | 99.3 | [ |
分类 | 处理方法 | 目标污染物 | 初始污染物浓度/g·kg-1 | 去除率/% | 参考文献 |
---|---|---|---|---|---|
生物处理 | 鼠李糖脂增强洗涤 | TPH | 5.939 | 76.8 | [ |
堆肥、牛胆汁和细菌培养的组合 | TPH | 30 | 99.7 | [ | |
溶剂清洗后生物处理 | TPH | 16.5 | 87.1 | [ | |
生物表面活性剂基洗涤与生物降解结合 | TPH | 85 | 85.1 | [ | |
高级氧化 | 电动力-Fenton氧化 | TPH | 316 | 77.0 | [ |
超临界水氧化 | PAHs | 290 | 91.0 | [ | |
超临界水氧化 | TOC | 200 | 83.9 | [ | |
近/超临界水氧化 | TOC | 200 | 69.5 | [ | |
以城市污水污泥为稀释剂超临界水氧化 | TOC | 200 | 98.4 | [ | |
脉冲介电势垒放电等离子体 | 油 | 165.372 | 61.8 | [ | |
脱硫化分离-芬顿氧化反应的结合 | TPH | 93.8 | 85.1 | [ | |
热解处理 | 微波热解 | TPH | 67.8 | 98.5 | [ |
微波热解 | TPH | 160 | 95.0 | [ | |
与聚氯乙烯共热解 | 油 | 34.7 | 93.5 | [ | |
与酒糟共热解 | 油 | 68.9 | 99.3 | [ |
收率/% | 温度/℃ |
---|---|
0.5 | 206 |
5 | 223 |
10 | 231 |
20 | 243 |
30 | 253 |
40 | 261 |
50 | 268 |
60 | 274 |
70 | 280 |
80 | 288 |
90 | 308 |
95 | 326 |
99.5 | 486 |
收率/% | 温度/℃ |
---|---|
0.5 | 206 |
5 | 223 |
10 | 231 |
20 | 243 |
30 | 253 |
40 | 261 |
50 | 268 |
60 | 274 |
70 | 280 |
80 | 288 |
90 | 308 |
95 | 326 |
99.5 | 486 |
样品 | 物料组成(收到基) | 工业分析(干燥基) | 元素分析(干燥基) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
含水率 | 含油率 | 固含量 | 挥发分 | 灰分 | 固定碳 | C | H | N | S | |||
油基钻屑 | 9.1 | 16.6 | 74.3 | 20.38 | 76.94 | 2.68 | 13.76 | 1.32 | 0.15 | 4.05 |
样品 | 物料组成(收到基) | 工业分析(干燥基) | 元素分析(干燥基) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
含水率 | 含油率 | 固含量 | 挥发分 | 灰分 | 固定碳 | C | H | N | S | |||
油基钻屑 | 9.1 | 16.6 | 74.3 | 20.38 | 76.94 | 2.68 | 13.76 | 1.32 | 0.15 | 4.05 |
SiO2 | CaO | Al2O3 | SO3 | Fe2O3 | BaO | MgO | K2O | Na2O | Cl | TiO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
54.16 | 12.24 | 9.25 | 7.16 | 4.83 | 4.39 | 2.76 | 1.77 | 1.31 | 1.15 | 0.41 | 0.60 |
SiO2 | CaO | Al2O3 | SO3 | Fe2O3 | BaO | MgO | K2O | Na2O | Cl | TiO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
54.16 | 12.24 | 9.25 | 7.16 | 4.83 | 4.39 | 2.76 | 1.77 | 1.31 | 1.15 | 0.41 | 0.60 |
温度/℃ | 灰分质量分数/% | 元素分析(质量分数)/% | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 82.30 | 8.26 | 0.39 | 0.17 | 3.74 |
300 | 82.66 | 8.13 | 0.38 | 0.17 | 3.91 |
350 | 83.17 | 7.88 | 0.36 | 0.16 | 4.03 |
400 | 83.25 | 7.79 | 0.32 | 0.15 | 4.00 |
450 | 83.86 | 7.54 | 0.29 | 0.15 | 3.90 |
550 | 86.87 | 7.04 | 0.24 | 0.12 | 3.82 |
650 | 89.85 | 6.67 | 0.18 | 0.11 | 3.70 |
750 | 95.80 | 5.58 | 0.17 | 0.10 | 3.67 |
温度/℃ | 灰分质量分数/% | 元素分析(质量分数)/% | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 82.30 | 8.26 | 0.39 | 0.17 | 3.74 |
300 | 82.66 | 8.13 | 0.38 | 0.17 | 3.91 |
350 | 83.17 | 7.88 | 0.36 | 0.16 | 4.03 |
400 | 83.25 | 7.79 | 0.32 | 0.15 | 4.00 |
450 | 83.86 | 7.54 | 0.29 | 0.15 | 3.90 |
550 | 86.87 | 7.04 | 0.24 | 0.12 | 3.82 |
650 | 89.85 | 6.67 | 0.18 | 0.11 | 3.70 |
750 | 95.80 | 5.58 | 0.17 | 0.10 | 3.67 |
温度/℃ | 元素分析(质量分数)/% | 氢碳原子比 | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 84.93 | 14.46 | 0.39 | 0.23 | 2.04 |
300 | 84.98 | 14.46 | 0.39 | 0.18 | 2.07 |
350 | 85.03 | 14.08 | 0.60 | 0.30 | 2.04 |
400 | 85.36 | 14.08 | 0.37 | 0.20 | 1.99 |
450 | 85.04 | 14.19 | 0.57 | 0.20 | 1.98 |
550 | 84.85 | 14.54 | 0.45 | 0.16 | 2.00 |
650 | 84.78 | 14.52 | 0.49 | 0.22 | 2.06 |
750 | 84.84 | 14.70 | 0.30 | 0.16 | 2.06 |
温度/℃ | 元素分析(质量分数)/% | 氢碳原子比 | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 84.93 | 14.46 | 0.39 | 0.23 | 2.04 |
300 | 84.98 | 14.46 | 0.39 | 0.18 | 2.07 |
350 | 85.03 | 14.08 | 0.60 | 0.30 | 2.04 |
400 | 85.36 | 14.08 | 0.37 | 0.20 | 1.99 |
450 | 85.04 | 14.19 | 0.57 | 0.20 | 1.98 |
550 | 84.85 | 14.54 | 0.45 | 0.16 | 2.00 |
650 | 84.78 | 14.52 | 0.49 | 0.22 | 2.06 |
750 | 84.84 | 14.70 | 0.30 | 0.16 | 2.06 |
油品 | 元素分析(质量分数)/% | 氢碳原子比 | ||
---|---|---|---|---|
C | H | N+S | ||
回收油平均值 | 84.98 | 14.38 | 0.65 | 2.03 |
俄罗斯原油 | 85.62 | 12.65 | 1.73 | 1.77 |
大庆原油 | 85.78 | 13.17 | 1.05 | 1.84 |
油品 | 元素分析(质量分数)/% | 氢碳原子比 | ||
---|---|---|---|---|
C | H | N+S | ||
回收油平均值 | 84.98 | 14.38 | 0.65 | 2.03 |
俄罗斯原油 | 85.62 | 12.65 | 1.73 | 1.77 |
大庆原油 | 85.78 | 13.17 | 1.05 | 1.84 |
1 | GAO Shikui, DONG Dazhong, TAO Ketao, et al. Experiences and lessons learned from China’s shale gas development: 2005—2019[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103648. |
2 | ZHAO Fu, FAN Ying, ZHANG Shaohui. Assessment of efficiency improvement and emission mitigation potentials in China’s petroleum refining industry[J]. Journal of Cleaner Production, 2021, 280: 124482. |
3 | CHEN Zhong, LI Dongyuan, TONG Kun, et al. Static decontamination of oil-based drill cuttings with pressurized hot water using response surface methodology[J]. Environmental Science and Pollution Research, 2019, 26(7): 7216-7227. |
4 | MISHRA Asmita, SIDDIQI Hammad, KUMARI Usha, et al. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111446. |
5 | 李学庆, 杨金荣, 尹志亮, 等. 油基钻井液含油钻屑无害化处理工艺技术[J]. 钻井液与完井液, 2013, 30(4): 81-83, 98. |
LI Xueqing, YANG Jinrong, YIN Zhiliang, et al. Novel harmless treating technology of oily cuttings[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 81-83, 98. | |
6 | 王天宇, 蒋文明, 刘杨. 含油污泥阴燃处理技术研究与进展[J]. 化工学报, 2020, 71(4): 1411-1423. |
WANG Tianyu, JIANG Wenming, LIU Yang. Research and progress of smoldering combustion technology for oily sludge[J]. CIESC Journal, 2020, 71(4): 1411-1423. | |
7 | 王君, 刘天璐, 黄群星, 等. 储运含油污泥慢速热解特性分析[J]. 化工学报, 2017, 68(3): 1138-1145. |
WANG Jun, LIU Tianlu, HUANG Qunxing, et al. Slow pyrolysis characteristics of petroleum sludge[J]. CIESC Journal, 2017, 68(3): 1138-1145. | |
8 | 许世佩, 王超, 李庆远, 等. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731. |
XU Shipei, WANG Chao, LI Qingyuan, et al. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings[J]. CIESC Journal, 2022, 73(4): 1724-1731. | |
9 | 郭亮, 翟永帆, 葛思佳, 等. 油基钻屑热解吸处理装置的现场应用[J]. 钻采工艺, 2020, 43(5): 130-133. |
GUO Liang, ZHAI Yongfan, GE Sijia, et al. Field application of oil-based cuttings thermal desorption unit[J]. Drilling & Production Technology, 2020, 43(5): 130-133. | |
10 | 杨华龙, 麦天佑. 废弃油基钻屑热解吸方案实验探究[J]. 化学工程与装备, 2020(7): 250-252. |
YANG Hualong, Tianyou MAI. Experimental research on thermal desorption scheme of waste oil-based drilling cuttings [J]. Chemical Engineering & Equipment, 2020(7): 250-252. | |
11 | 郭文辉, 孟祥海, 肖超, 等. 热脱附技术处理油基钻屑实验研究[J]. 油气田环境保护, 2018, 28(4): 38-41, 62. |
GUO Wenhui, MENG Xianghai, XIAO Chao, et al. Experimental study on the oil-based drill cuttings treatment by thermal desorption[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(4): 38-41, 62. | |
12 | OLASANMI Ibukun O, THRING Ronald W. Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils[J]. Journal of Advanced Research, 2020, 21: 79-90. |
13 | Daniel OSEI-TWUMASI, Bernard FEI-BAFFOE, ANNING Alexander Kofi, et al. Synergistic effects of compost, cow bile and bacterial culture on bioremediation of hydrocarbon-contaminated drill mud waste[J]. Environmental Pollution, 2020, 266: 115202. |
14 | POYAI Thaksina, GETWECH Chiratthakan, DHANASIN Phanachit, et al. Solvent-based washing as a treatment alternative for onshore petroleum drill cuttings in Thailand[J]. Science of the Total Environment, 2020, 718: 137384. |
15 | YAN Ping, LU Mang, GUAN Yueming, et al. Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment[J]. Bioresource Technology, 2011, 102(22): 10252-10259. |
16 | ADHAMI Sajjad, AHMAD Jamshidi-Zanjani, DARBAN Ahmad Khodadadi. Remediation of oil-based drilling waste using the electro Kinetic-Fenton method[J]. Process Safety and Environmental Protection, 2021, 149: 432-441. |
17 | KRONHOLM Juhani, KALPALA Jarno, HARTONEN Kari, et al. Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs[J]. The Journal of Supercritical Fluids, 2002, 23(2): 123-134. |
18 | CHEN Zhong, CHEN Zeliang, YIN Fengjun, et al. Supercritical water oxidation of oil-based drill cuttings[J]. Journal of Hazardous Materials, 2017, 332: 205-213. |
19 | CHEN Zhong, TONG Kun, HE Chunlan, et al. High quality oil recovery from oil-based drill cuttings via catalytic upgrading in presence of near-/supercritical water and different industrial wastes[J]. Journal of Cleaner Production, 2021, 321: 129061. |
20 | CHEN Zhong, ZHENG Zhijian, LI Dongyuan, et al. Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent[J]. Journal of Hazardous Materials, 2020, 384: 121225. |
21 | WU Yongqian, DING Lijian, ZHANG Cheng, et al. Experimental study on the treatment of oil-based drill cutting by pulsed dielectric barrier discharge plasma at atmospheric pressure[J]. Journal of Cleaner Production, 2022, 339: 130757. |
22 | YANG Hang, CAI Jiaxi, SUN Jianfa, et al. Treatment of oil-based drilling cuttings using the demulsification separation-Fenton oxidation method[J]. Environmental Science and Pollution Research, 2021, 28(45): 64307-64321. |
23 | JÚNIOR Irineu Petri, MARTINS André Leibsohn, ATAIDE Carlos H, et al. Microwave drying remediation of petroleum-contaminated drill cuttings[J]. Journal of Environmental Management, 2017, 196: 659-665. |
24 | SHANG H, SNAPE C E, KINGMAN S W, et al. Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity[J]. Separation and Purification Technology, 2006, 49(1): 84-90. |
25 | XIE Pin, WU Hongyi, YANG Hang, et al. Utilization of Cr-contaminated oil-based drilling-cuttings ash in preparation of bauxite-based proppants [J]. Environmental Engineering Science, 2022, 39(1): 73-80. |
26 | YANG Hang, LIU Yunli, BAI Guoliang, et al. Study on the co-pyrolysis characteristics of oil-based drill cuttings and lees[J]. Biomass and Bioenergy, 2022, 160: 106436. |
27 | XU Shipei, ZENG Xi, HAN Zhennan, et al. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Applied Energy, 2019, 242: 732-740. |
28 | SIRAMARD Somprasong, ZHAN Jinhui, HAN Zhennan, et al. Secondary cracking of volatile and its avoidance in infrared-heating pyrolysis reactor[J]. Carbon Resources Conversion, 2018, 1(3): 202-208. |
29 | ZHU Jialong, JIN Lijun, LI Jiangang, et al. Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor[J]. Bioresource Technology, 2019, 290: 121739. |
30 | 中国煤炭工业协会. 煤的工业分析方法: [S]. 北京: 中国标准出版社, 2008. |
Proximate analysis of coal: [S]. Beijing: Standards Press of China, 2008. | |
31 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的元素分析: [S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Ultimate analysis of coal: [S]. Beijing: Standards Press of China, 2015. | |
32 | 许世佩. 红外快速加热与反应分级调控煤热解制油气研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2019. |
XU Shipei. Coal pyrolysis for oil and gas with infrared quick heating and staged reaction control[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2019. | |
33 | 石磊. 煤共价键结构在热解过程中的阶段解离研究[D]. 北京: 北京化工大学, 2014. |
SHI Lei. Study on the cleavage of covalent bonds in coal pyrolysis in consecutive temperature ranges[D]. Beijing: Beijing University of Chemical Technology, 2014. |
[1] | DING Jiaying, XUE Yongbing, LIU Zhenmin, LI Tao, CHU Yifan. Research progress of environmentally asphalt [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 226-231. |
[2] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
[3] | LIU Zuoren, XU Chuanlong, TANG Guanghua. Simulation and sensitivity analysis of flue gas environmental protection island system in coal-fired unit based on ASPEN Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6564-6573. |
[4] | Hua ZHANG, Yiding SHEN, Kai YANG, Wangwang DUAN. Synthesis and application of self-crosslinking cationic acrylamide copolymer [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4581-4588. |
[5] | WANG Minghua, JIANG Wenhua, HAN Yijie. Analysis on the present situation and problems of modern coal-chemical industry [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2882-2887. |
[6] | ZHANG Hao, FAN Xinyu, WANG Jiankun, GUO Jing, LIANG Ka. Synthesis of cross-linked carboxymethyl starch and its adsorption properties on heavy metal ions [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2554-2561. |
[7] | LI Wenping . Filtration and separation development and its applications in energy,water and environmental industries [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1365-1372. |
[8] | LI Guotao1,SUI Hong1,2,WANG Hanming3,XU Changchun1,2,LI Xin1,LI Guangbin2,LI Xingang1,2. Steady state simulation of fluidized catalytic cracking(FCC)unit:Effects of regenerator heat remover duty on the process [J]. Chemical Industry and Engineering Progree, 2012, 31(05): 1004-1009. |
[9] | JIANG Pingping,ZHANG Shuyuan,LENG Yan,DONG Yuming,ZHANG Pingbo. Research and application progress of the catalytic synthesis of environmental plasticizers [J]. Chemical Industry and Engineering Progree, 2012, 31(05): 953-964. |
[10] | LIU Xiuhua,LEI Jiarong,YANG Yuchuan,LIN tao. Application of radiation technology in wastewater treatment [J]. Chemical Industry and Engineering Progree, 2010, 29(5): 938-. |
[11] | XIN Yinchang,ZHOU Shiguang,KANG Feng,XU Dongbin,AN Jun. Rare earths active compounds operated by NMR for energy-saving and environmental protection [J]. Chemical Industry and Engineering Progree, 2007, 26(4): 594-. |
[12] | OU Yuxing;HAN Tingjie;MENG Zheng. Recovery and reuse of polyvinyl chloride and its mixture by pyrolysis [J]. Chemical Industry and Engineering Progree, 2007, 26(1): 18-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |